Question 8 of 10

[tex]\[1 - \cos (6x) = \, ?\][/tex]

A. [tex]\[3 \cos (2x)\][/tex]

B. [tex]\[3 \sin (2x)\][/tex]

C. [tex]\[2 \sin^2 (3x)\][/tex]

D. [tex]\[2 \cos^2 (3x)\][/tex]



Answer :

To find the value of [tex]\( 1 - \cos(6x) \)[/tex], let's use trigonometric identities to simplify the expression.

Recall the double-angle identity for cosine:
[tex]\[ \cos(2\theta) = 1 - 2\sin^2(\theta) \][/tex]

We want to transform [tex]\( 1 - \cos(6x) \)[/tex] into a form involving sine. Notice that [tex]\( \cos(6x) \)[/tex] can be written in terms of sine using the identity for double angles.

Let's start by setting up our given expression and look for a way to apply the trigonometric identities:
[tex]\[ 1 - \cos(6x) \][/tex]

We know that:
[tex]\[ 1 - \cos(2\theta) = 2\sin^2(\theta) \][/tex]

In our case, we are dealing with [tex]\( 6x \)[/tex] instead of [tex]\( 2\theta \)[/tex]. Therefore, let’s substitute [tex]\( \theta = 3x \)[/tex] so that [tex]\( 2\theta = 6x \)[/tex].

Now, substituting:
[tex]\[ 1 - \cos(6x) = 1 - \cos(2 \times 3x) \][/tex]

Using our identity:
[tex]\[ 1 - \cos(2A) = 2\sin^2(A) \][/tex]

Here, [tex]\( 2A = 6x \)[/tex] implies [tex]\( A = 3x \)[/tex]. Thus:
[tex]\[ 1 - \cos(6x) = 2\sin^2(3x) \][/tex]

Therefore, the expression simplifies to:
[tex]\[ 1 - \cos(6x) = 2\sin^2(3x) \][/tex]

Thus, the correct answer is:
[tex]\[ \boxed{2 \sin ^2(3 x)} \][/tex]

This corresponds to option C.