Answer :
Sure! Let's complete the table step by step.
Given equations are:
1. [tex]\(3x + 4y = 12\)[/tex]
2. [tex]\(3x + 4y = 4\)[/tex]
3. [tex]\(3x + 4y = 3\)[/tex]
4. [tex]\(3x + 4y = 2\)[/tex]
To find the [tex]\(x\)[/tex]-intercept, we set [tex]\(y = 0\)[/tex] and solve for [tex]\(x\)[/tex]. Similarly, to find the [tex]\(y\)[/tex]-intercept, we set [tex]\(x = 0\)[/tex] and solve for [tex]\(y\)[/tex].
### For the equation [tex]\(3x + 4y = 12\)[/tex]:
- [tex]\(x\)[/tex]-intercept:
- Set [tex]\(y = 0\)[/tex]:
[tex]\[ 3x + 4(0) = 12 \implies 3x = 12 \implies x = 4 \][/tex]
- [tex]\(y\)[/tex]-intercept:
- Set [tex]\(x = 0\)[/tex]:
[tex]\[ 3(0) + 4y = 12 \implies 4y = 12 \implies y = 3 \][/tex]
### For the equation [tex]\(3x + 4y = 4\)[/tex]:
- [tex]\(x\)[/tex]-intercept:
- Set [tex]\(y = 0\)[/tex]:
[tex]\[ 3x + 4(0) = 4 \implies 3x = 4 \implies x = \frac{4}{3} \][/tex]
### For the equation [tex]\(3x + 4y = 3\)[/tex]:
- [tex]\(x\)[/tex]-intercept:
- Set [tex]\(y = 0\)[/tex]:
[tex]\[ 3x + 4(0) = 3 \implies 3x = 3 \implies x = 1 \][/tex]
### For the equation [tex]\(3x + 4y = 2\)[/tex]:
- [tex]\(x\)[/tex]-intercept:
- Set [tex]\(y = 0\)[/tex]:
[tex]\[ 3x + 4(0) = 2 \implies 3x = 2 \implies x = \frac{2}{3} \][/tex]
- [tex]\(y\)[/tex]-intercept:
- Set [tex]\(x = 0\)[/tex]:
[tex]\[ 3(0) + 4y = 2 \implies 4y = 2 \implies y = \frac{1}{2} \][/tex]
Now, let’s fill in the table with these results:
[tex]\[ \begin{array}{|ccc|} \hline \text{Equations} & \text{x-intercept} & \text{y-intercept} \\ \hline 3x + 4y = 12 & 4 & 3 \\ 3x + 4y = 4 & \frac{4}{3} & \\ 3x + 4y = 3 & 1 & \\ 3x + 4y = 2 & \frac{2}{3} & \frac{1}{2} \\ \hline \end{array} \][/tex]
Thus, the complete table is:
[tex]\[ \begin{tabular}{|ccc|} \hline \text{Equations} & \text{x-intercept} & \text{y-intercept} \\ \hline 3x + 4y = 12 & 4 & 3 \\ 3x + 4y = 4 & \frac{4}{3} & \\ 3x + 4y = 3 & 1 & \\ 3x + 4y = 2 & \frac{2}{3} & \frac{1}{2} \\ \hline \end{tabular} \][/tex]
Given equations are:
1. [tex]\(3x + 4y = 12\)[/tex]
2. [tex]\(3x + 4y = 4\)[/tex]
3. [tex]\(3x + 4y = 3\)[/tex]
4. [tex]\(3x + 4y = 2\)[/tex]
To find the [tex]\(x\)[/tex]-intercept, we set [tex]\(y = 0\)[/tex] and solve for [tex]\(x\)[/tex]. Similarly, to find the [tex]\(y\)[/tex]-intercept, we set [tex]\(x = 0\)[/tex] and solve for [tex]\(y\)[/tex].
### For the equation [tex]\(3x + 4y = 12\)[/tex]:
- [tex]\(x\)[/tex]-intercept:
- Set [tex]\(y = 0\)[/tex]:
[tex]\[ 3x + 4(0) = 12 \implies 3x = 12 \implies x = 4 \][/tex]
- [tex]\(y\)[/tex]-intercept:
- Set [tex]\(x = 0\)[/tex]:
[tex]\[ 3(0) + 4y = 12 \implies 4y = 12 \implies y = 3 \][/tex]
### For the equation [tex]\(3x + 4y = 4\)[/tex]:
- [tex]\(x\)[/tex]-intercept:
- Set [tex]\(y = 0\)[/tex]:
[tex]\[ 3x + 4(0) = 4 \implies 3x = 4 \implies x = \frac{4}{3} \][/tex]
### For the equation [tex]\(3x + 4y = 3\)[/tex]:
- [tex]\(x\)[/tex]-intercept:
- Set [tex]\(y = 0\)[/tex]:
[tex]\[ 3x + 4(0) = 3 \implies 3x = 3 \implies x = 1 \][/tex]
### For the equation [tex]\(3x + 4y = 2\)[/tex]:
- [tex]\(x\)[/tex]-intercept:
- Set [tex]\(y = 0\)[/tex]:
[tex]\[ 3x + 4(0) = 2 \implies 3x = 2 \implies x = \frac{2}{3} \][/tex]
- [tex]\(y\)[/tex]-intercept:
- Set [tex]\(x = 0\)[/tex]:
[tex]\[ 3(0) + 4y = 2 \implies 4y = 2 \implies y = \frac{1}{2} \][/tex]
Now, let’s fill in the table with these results:
[tex]\[ \begin{array}{|ccc|} \hline \text{Equations} & \text{x-intercept} & \text{y-intercept} \\ \hline 3x + 4y = 12 & 4 & 3 \\ 3x + 4y = 4 & \frac{4}{3} & \\ 3x + 4y = 3 & 1 & \\ 3x + 4y = 2 & \frac{2}{3} & \frac{1}{2} \\ \hline \end{array} \][/tex]
Thus, the complete table is:
[tex]\[ \begin{tabular}{|ccc|} \hline \text{Equations} & \text{x-intercept} & \text{y-intercept} \\ \hline 3x + 4y = 12 & 4 & 3 \\ 3x + 4y = 4 & \frac{4}{3} & \\ 3x + 4y = 3 & 1 & \\ 3x + 4y = 2 & \frac{2}{3} & \frac{1}{2} \\ \hline \end{tabular} \][/tex]