Sure! Let's solve the given problem step by step.
1. Find the first 6 multiples of [tex]\( a = 8 \)[/tex]
To find the multiples of any number, we simply multiply that number by the positive integers [tex]\( 1, 2, 3, \ldots \)[/tex].
For [tex]\( a = 8 \)[/tex]:
[tex]\[
8 \times 1 = 8
\][/tex]
[tex]\[
8 \times 2 = 16
\][/tex]
[tex]\[
8 \times 3 = 24
\][/tex]
[tex]\[
8 \times 4 = 32
\][/tex]
[tex]\[
8 \times 5 = 40
\][/tex]
[tex]\[
8 \times 6 = 48
\][/tex]
Therefore, the first 6 multiples of [tex]\( 8 \)[/tex] are:
[tex]\[ 8, 16, 24, 32, 40, 48 \][/tex]
2. Find the factors of the following numbers
a) [tex]\( 24 \)[/tex]
To find the factors of [tex]\( 24 \)[/tex], we need to find all positive integers that divide [tex]\( 24 \)[/tex] without leaving a remainder.
The factors of [tex]\( 24 \)[/tex] are:
[tex]\[ 1, 2, 3, 4, 6, 8, 12, 24 \][/tex]
b) [tex]\( 11 \)[/tex]
To find the factors of [tex]\( 11 \)[/tex], we need to find all positive integers that divide [tex]\( 11 \)[/tex] without leaving a remainder. Since [tex]\( 11 \)[/tex] is a prime number, its only factors are [tex]\( 1 \)[/tex] and [tex]\( 11 \)[/tex].
The factors of [tex]\( 11 \)[/tex] are:
[tex]\[ 1, 11 \][/tex]
Therefore, the answers are:
1. The first 6 multiples of [tex]\( a = 8 \)[/tex]:
[tex]\[ 8, 16, 24, 32, 40, 48 \][/tex]
2. Factors of the following numbers:
- [tex]\( 24 \)[/tex]:
[tex]\[ 1, 2, 3, 4, 6, 8, 12, 24 \][/tex]
- [tex]\( 11 \)[/tex]:
[tex]\[ 1, 11 \][/tex]