What is the exponent for the corrected scientific notation in the expression [tex]\[ \left(10^5 \div 10^2\right)=10^n ? \][/tex]

A. [tex]\(10^7\)[/tex]

B. [tex]\(10^{-3}\)[/tex]

C. [tex]\(10^{10}\)[/tex]



Answer :

To determine the exponent [tex]\( n \)[/tex] in the expression [tex]\( 10^5 \div 10^2 = 10^n \)[/tex], we can use the rules of exponents for division. Specifically, for any base [tex]\( a \)[/tex] and exponents [tex]\( m \)[/tex] and [tex]\( n \)[/tex],

[tex]\[ \frac{a^m}{a^n} = a^{m-n} \][/tex]

Given the base is 10 and the exponents are 5 and 2 respectively, according to the exponent rule,

[tex]\[ \frac{10^5}{10^2} = 10^{5-2} \][/tex]

Calculate the exponent [tex]\( 5 - 2 \)[/tex]:

[tex]\[ 5 - 2 = 3 \][/tex]

So,

[tex]\[ 10^5 \div 10^2 = 10^3 \][/tex]

Thus, the exponent [tex]\( n \)[/tex] is [tex]\( 3 \)[/tex].

Hence, the corrected scientific notation for [tex]\( 10^5 \div 10^2 \)[/tex] is [tex]\( 10^3 \)[/tex], and the exponent is:

[tex]\[ \boxed{3} \][/tex]