If [tex]C = \frac{5}{9}(F - 32)[/tex] and [tex]F[/tex] is 95, then [tex]C =[/tex]

A. 139

B. 113.4

C. 63

D. 35

E. 20.8



Answer :

Certainly! Let's solve for [tex]\( C \)[/tex] using the given formula [tex]\( C = \frac{5}{9}(F - 32) \)[/tex] where [tex]\( F \)[/tex] is [tex]\( 95 \)[/tex].

1. Substitute [tex]\( F \)[/tex] with [tex]\( 95 \)[/tex] in the formula:
[tex]\[ C = \frac{5}{9}(95 - 32) \][/tex]

2. Calculate the expression inside the parentheses first:
[tex]\[ 95 - 32 = 63 \][/tex]

3. Now multiply [tex]\( 63 \)[/tex] by [tex]\( \frac{5}{9} \)[/tex]:
This means we are doing:
[tex]\[ C = \frac{5}{9} \times 63 \][/tex]

4. Perform the multiplication:
[tex]\[ C = \frac{5 \times 63}{9} \][/tex]

5. Simplify the fraction:
[tex]\[ \frac{5 \times 63}{9} = \frac{315}{9} \][/tex]

6. Divide [tex]\( 315 \)[/tex] by [tex]\( 9 \)[/tex]:
[tex]\[ 315 \div 9 = 35 \][/tex]

Therefore, the value of [tex]\( C \)[/tex] is [tex]\( 35 \)[/tex].

So, the correct answer is:
[tex]\[ \boxed{35} \][/tex]