Certainly! Let's solve for [tex]\( C \)[/tex] using the given formula [tex]\( C = \frac{5}{9}(F - 32) \)[/tex] where [tex]\( F \)[/tex] is [tex]\( 95 \)[/tex].
1. Substitute [tex]\( F \)[/tex] with [tex]\( 95 \)[/tex] in the formula:
[tex]\[
C = \frac{5}{9}(95 - 32)
\][/tex]
2. Calculate the expression inside the parentheses first:
[tex]\[
95 - 32 = 63
\][/tex]
3. Now multiply [tex]\( 63 \)[/tex] by [tex]\( \frac{5}{9} \)[/tex]:
This means we are doing:
[tex]\[
C = \frac{5}{9} \times 63
\][/tex]
4. Perform the multiplication:
[tex]\[
C = \frac{5 \times 63}{9}
\][/tex]
5. Simplify the fraction:
[tex]\[
\frac{5 \times 63}{9} = \frac{315}{9}
\][/tex]
6. Divide [tex]\( 315 \)[/tex] by [tex]\( 9 \)[/tex]:
[tex]\[
315 \div 9 = 35
\][/tex]
Therefore, the value of [tex]\( C \)[/tex] is [tex]\( 35 \)[/tex].
So, the correct answer is:
[tex]\[ \boxed{35} \][/tex]