Let's solve the problem step-by-step.
1. Understanding the Functions:
- [tex]\(\square \ x\)[/tex] is defined as [tex]\(x-2\)[/tex].
- [tex]\((x)\)[/tex] is defined as [tex]\(2x + 5\)[/tex].
2. Calculate [tex]\(\square \ 9\)[/tex]:
- [tex]\(\square \ 9\)[/tex] means we use the definition [tex]\(\square \ x = x - 2\)[/tex].
- Plug in [tex]\(x = 9\)[/tex]:
[tex]\[
\square \ 9 = 9 - 2 = 7
\][/tex]
3. Calculate (4):
- (4) means we use the definition [tex]\( (x) = 2x + 5\)[/tex].
- Plug in [tex]\(x = 4\)[/tex]:
[tex]\[
(4) = 2 \cdot 4 + 5 = 8 + 5 = 13
\][/tex]
4. Combine the Results:
- We need to combine [tex]\(\square \ 9\)[/tex] and (4):
[tex]\[
\square \ 9 + (4) = 7 + 13
\][/tex]
- Adding these values:
[tex]\[
7 + 13 = 20
\][/tex]
The final answer for the given problem is: [tex]\(\boxed{20}\)[/tex].
The intermediate results are:
[tex]\[
\square \ 9 = 7
\][/tex]
[tex]\[
(4) = 13
\][/tex]
[tex]\[
\square \ 9 + (4) = 20
\][/tex]