Simplify each term separately by multiplying all the factors in a term together.

[tex]\[
\begin{array}{l}
3x(2x^2): 3 \cdot x \cdot 2 \cdot x \cdot x = 6x^3 \\
3x(4x): 3 \cdot x \cdot 4 \cdot x = 12x^2 \\
3x(9): 3 \cdot x \cdot 9 = 27x
\end{array}
\][/tex]



Answer :

Sure, let's simplify each term one by one.

First Term: [tex]\(3x \cdot 2x^2\)[/tex]

Begin by expanding the term:
[tex]\[ 3 \cdot x \cdot 2 \cdot x \cdot x \][/tex]

Now, combine the constant multipliers and the variables:
[tex]\[ (3 \cdot 2) \cdot (x \cdot x \cdot x) \][/tex]

Calculate the constants:
[tex]\[ 3 \cdot 2 = 6 \][/tex]

Combine the variables:
[tex]\[ x \cdot x \cdot x = x^3 \][/tex]

So, the first term simplifies to:
[tex]\[ 6x^3 \][/tex]

Second Term: [tex]\(3x \cdot 4x\)[/tex]

Begin by expanding the term:
[tex]\[ 3 \cdot x \cdot 4 \cdot x \][/tex]

Now, combine the constant multipliers and the variables:
[tex]\[ (3 \cdot 4) \cdot (x \cdot x) \][/tex]

Calculate the constants:
[tex]\[ 3 \cdot 4 = 12 \][/tex]

Combine the variables:
[tex]\[ x \cdot x = x^2 \][/tex]

So, the second term simplifies to:
[tex]\[ 12x^2 \][/tex]

Third Term: [tex]\(3x \cdot 9\)[/tex]

Begin by expanding the term:
[tex]\[ 3 \cdot x \cdot 9 \][/tex]

Combine the constant multipliers and the variable:
[tex]\[ (3 \cdot 9) \cdot x \][/tex]

Calculate the constants:
[tex]\[ 3 \cdot 9 = 27 \][/tex]

So, the third term simplifies to:
[tex]\[ 27x \][/tex]

Here is the final simplified form for each term:

1. [tex]\( 3x \cdot 2x^2 = 6x^3 \)[/tex]
2. [tex]\( 3x \cdot 4x = 12x^2 \)[/tex]
3. [tex]\( 3x \cdot 9 = 27x \)[/tex]

I hope this helps!