Which function in vertex form is equivalent to [tex]f(x)=x^2+8-16x[/tex]?

A. [tex]f(x)=(x-8)^2-56[/tex]

B. [tex]f(x)=(x-4)^2+0[/tex]

C. [tex]f(x)=(x+8)^2-72[/tex]

D. [tex]f(x)=(x+4)^2-32[/tex]



Answer :

To determine which function in vertex form is equivalent to [tex]\( f(x) = x^2 + 8 - 16x \)[/tex], we need to rewrite the given quadratic function in its vertex form. Vertex form of a quadratic function is given by:

[tex]\[ f(x) = a(x - h)^2 + k \][/tex]

Where [tex]\((h, k)\)[/tex] is the vertex of the parabola.

First, let's rewrite the given function in a standard form:

[tex]\[ f(x) = x^2 - 16x + 8 \][/tex]

Next, we complete the square to transform it into vertex form.

1. Start with the original function:
[tex]\[ f(x) = x^2 - 16x + 8 \][/tex]

2. Group the [tex]\(x\)[/tex] terms together:
[tex]\[ f(x) = (x^2 - 16x) + 8 \][/tex]

3. To complete the square, add and subtract the square of half the coefficient of [tex]\(x\)[/tex] inside the parentheses. The coefficient of [tex]\(x\)[/tex] is [tex]\(-16\)[/tex], and half of [tex]\(-16\)[/tex] is [tex]\(-8\)[/tex], so we square it to get [tex]\(64\)[/tex]:

[tex]\[ f(x) = (x^2 - 16x + 64 - 64) + 8 \][/tex]
[tex]\[ f(x) = (x^2 - 16x + 64) - 64 + 8 \][/tex]

4. Now, the expression inside the parentheses is a perfect square trinomial:
[tex]\[ f(x) = (x - 8)^2 - 64 + 8 \][/tex]
[tex]\[ f(x) = (x - 8)^2 - 56 \][/tex]

Thus, the vertex form of the given quadratic function [tex]\( f(x) = x^2 - 16x + 8 \)[/tex] is:

[tex]\[ f(x) = (x - 8)^2 - 56 \][/tex]

Let's compare this with the given options:

1. [tex]\( f(x) = (x - 8)^2 - 56 \)[/tex] [tex]\(\Rightarrow\)[/tex] This matches our vertex form.
2. [tex]\( f(x) = (x - 4)^2 + 0 \)[/tex]
3. [tex]\( f(x) = (x + 8)^2 - 72 \)[/tex]
4. [tex]\( f(x) = (x + 4)^2 - 32 \)[/tex]

Therefore, the function in vertex form that is equivalent to [tex]\( f(x) = x^2 + 8 - 16x \)[/tex] is:

[tex]\[ f(x) = (x - 8)^2 - 56 \][/tex]