If [tex]f(x)=x^2-7x[/tex] and [tex]g(x)=x+9[/tex], evaluate each of the following.

(a) [tex]\((f \circ g)(-1) = \boxed{\phantom{}}\)[/tex]

(b) [tex]\((g \circ f)(-1) = \boxed{\phantom{}}\)[/tex]



Answer :

Let's tackle the given problem step-by-step.

We need to evaluate two composite functions based on the given functions [tex]\( f(x) = x^2 - 7x \)[/tex] and [tex]\( g(x) = x + 9 \)[/tex].

(a) [tex]\((f \circ g)(-1)\)[/tex]

To find [tex]\((f \circ g)(-1)\)[/tex], we need to evaluate the inner function first and then the outer function:
1. Calculate [tex]\( g(-1) \)[/tex]:
[tex]\[ g(-1) = -1 + 9 = 8 \][/tex]
2. Now, we substitute this result into [tex]\( f(x) \)[/tex]:
[tex]\[ f(g(-1)) = f(8) \][/tex]
3. Calculate [tex]\( f(8) \)[/tex]:
[tex]\[ f(8) = 8^2 - 7 \cdot 8 = 64 - 56 = 8 \][/tex]
Therefore,
[tex]\[ (f \circ g)(-1) = 8 \][/tex]

(b) [tex]\((g \circ f)(-1)\)[/tex]

To find [tex]\((g \circ f)(-1)\)[/tex], we again need to evaluate the inner function first and then the outer function:
1. Calculate [tex]\( f(-1) \)[/tex]:
[tex]\[ f(-1) = (-1)^2 - 7 \cdot (-1) = 1 + 7 = 8 \][/tex]
2. Now, we substitute this result into [tex]\( g(x) \)[/tex]:
[tex]\[ g(f(-1)) = g(8) \][/tex]
3. Calculate [tex]\( g(8) \)[/tex]:
[tex]\[ g(8) = 8 + 9 = 17 \][/tex]
Therefore,
[tex]\[ (g \circ f)(-1) = 17 \][/tex]

So, the final results are:
[tex]\[ (a) (f \circ g)(-1) = 8 \][/tex]
[tex]\[ (b) (g \circ f)(-1) = 17 \][/tex]