What is the end behavior of the graph of the polynomial function [tex]f(x) = 2x^3 - 26x - 24[/tex]?

A. As [tex]x \rightarrow -\infty, y \rightarrow -\infty[/tex] and as [tex]x \rightarrow \infty, y \rightarrow -\infty[/tex].

B. As [tex]x \rightarrow -\infty, y \rightarrow -\infty[/tex] and as [tex]x \rightarrow \infty, y \rightarrow \infty[/tex].

C. As [tex]x \rightarrow -\infty, y \rightarrow \infty[/tex] and as [tex]x \rightarrow \infty, y \rightarrow -\infty[/tex].

D. As [tex]x \rightarrow -\infty, y \rightarrow \infty[/tex] and as [tex]x \rightarrow \infty, y \rightarrow \infty[/tex].



Answer :

To determine the end behavior of the graph of the polynomial function [tex]\( f(x) = 2x^3 - 26x - 24 \)[/tex], we need to focus on the term with the highest degree since it will dominate the behavior of the function as [tex]\( x \)[/tex] approaches [tex]\( \infty \)[/tex] or [tex]\( -\infty \)[/tex].

In this case, the term with the highest degree is [tex]\( 2x^3 \)[/tex]. We will analyze the behavior of [tex]\( f(x) \)[/tex] based on this term:

1. As [tex]\( x \rightarrow -\infty \)[/tex]:
[tex]\[ 2x^3 \rightarrow 2(-\infty)^3 = 2(-\infty) = -\infty. \][/tex]
Therefore, as [tex]\( x \rightarrow -\infty \)[/tex], [tex]\( f(x) \rightarrow -\infty \)[/tex].

2. As [tex]\( x \rightarrow \infty \)[/tex]:
[tex]\[ 2x^3 \rightarrow 2(\infty)^3 = 2(\infty) = \infty. \][/tex]
Therefore, as [tex]\( x \rightarrow \infty \)[/tex], [tex]\( f(x) \rightarrow \infty \)[/tex].

Based on this analysis, the end behavior of the graph of the polynomial function [tex]\( f(x) = 2x^3 - 26x - 24 \)[/tex] is as follows:

- As [tex]\( x \rightarrow -\infty \)[/tex], [tex]\( y \rightarrow -\infty \)[/tex].
- As [tex]\( x \rightarrow \infty \)[/tex], [tex]\( y \rightarrow \infty \)[/tex].

So the correct choice is:
- As [tex]\( x \rightarrow -\infty, y \rightarrow -\infty \)[/tex].
- As [tex]\( x \rightarrow \infty, y \rightarrow \infty \)[/tex].