Nathaniel writes the general form of the equation [tex]$g m = c m + r g$[/tex] for when the equation is solved for [tex]$m$[/tex]. He uses the general form to solve the equation [tex]$-3 m = 4 m - 15$[/tex] for [tex][tex]$m$[/tex][/tex]. Which expression shows what Nathaniel will actually evaluate?

A. [tex]$4 + 15 - 3$[/tex]
B. [tex]$4 - 15 + 3$[/tex]
C. [tex]$\frac{-15}{-3 - 4}$[/tex]
D. [tex][tex]$-15 - \frac{-3}{4}$[/tex][/tex]



Answer :

Sure, let's solve the equation step-by-step to determine what Nathaniel will actually evaluate.

The given equation is:
[tex]\[ -3m = 4m - 15 \][/tex]

First, we want to combine like terms by bringing all the terms involving [tex]\(m\)[/tex] to one side. To do this, add [tex]\(3m\)[/tex] to both sides of the equation:

[tex]\[ -3m + 3m = 4m - 15 + 3m \][/tex]

This simplifies to:

[tex]\[ 0 = 7m - 15 \][/tex]

Next, we need to isolate [tex]\(m\)[/tex]. To do this, add 15 to both sides of the equation:

[tex]\[ 0 + 15 = 7m - 15 + 15 \][/tex]

Simplifying, we get:

[tex]\[ 15 = 7m \][/tex]

To solve for [tex]\(m\)[/tex], divide both sides by 7:

[tex]\[ m = \frac{15}{7} \][/tex]

Now, let's look at the given options to see which expression Nathaniel will evaluate to get this result:

1. [tex]\( 4 + 15 - 3 \)[/tex]
2. [tex]\( 4 - 15 + 3 \)[/tex]
3. [tex]\( \frac{-15}{-3-4} \)[/tex]
4. [tex]\( -15 - \frac{-3}{4} \)[/tex]

To find the correct expression, let's evaluate the third option:

[tex]\[ \frac{-15}{-3-4} = \frac{-15}{-7} \][/tex]

The negative signs cancel out, giving:

[tex]\[ \frac{15}{7} \][/tex]

Therefore, the expression [tex]\( \frac{-15}{-3-4} \)[/tex] is indeed what Nathaniel will evaluate when solving the equation. The equivalent option in our list is:

[tex]\[ \frac{-15}{-3-4} \][/tex]

So, the correct answer is:

[tex]\[ \boxed{\frac{-15}{-3-4}} \][/tex]