Question 10 (5 points)

Consider the statement [tex]P: x + 9 = 10[/tex]. Which of the following is an equivalent statement?

A) [tex]S: x = 1[/tex]

B) [tex]R: x \ \textgreater \ 0[/tex]

C) [tex]\sim P: x + 9 \neq 10[/tex]

D) [tex]Q: x - 9 = 10[/tex]



Answer :

Let's analyze the given statement [tex]\( P: x + 9 = 10 \)[/tex] to determine which of the provided options is an equivalent statement.

Step 1: Solve the statement [tex]\( P \)[/tex].

Start with the equation:
[tex]\[ x + 9 = 10 \][/tex]

To isolate [tex]\( x \)[/tex], subtract 9 from both sides:
[tex]\[ x + 9 - 9 = 10 - 9 \][/tex]
[tex]\[ x = 1 \][/tex]

Step 2: Compare each option to [tex]\( P \)[/tex].

A) [tex]\( S: x = 1 \)[/tex]

This statement is equivalent to [tex]\( P \)[/tex] because solving [tex]\( P \)[/tex] gives [tex]\( x = 1 \)[/tex], which matches exactly.

B) [tex]\( R: x > 0 \)[/tex]

While [tex]\( x = 1 \)[/tex] satisfies this inequality, [tex]\( P \)[/tex] specifically states [tex]\( x = 1 \)[/tex]. The inequality [tex]\( x > 0 \)[/tex] suggests a range of possible values for [tex]\( x \)[/tex], which is broader than [tex]\( P \)[/tex]. Therefore, [tex]\( R \)[/tex] is not strictly equivalent to [tex]\( P \)[/tex].

C) [tex]\( \sim P: x + 9 \neq 10 \)[/tex]

This is the negation of [tex]\( P \)[/tex], which means it directly opposes the original statement. Therefore, it is not equivalent to [tex]\( P \)[/tex].

D) [tex]\( Q: x - 9 = 10 \)[/tex]

Solving this equation:
[tex]\[ x - 9 = 10 \][/tex]

Add 9 to both sides:
[tex]\[ x - 9 + 9 = 10 + 9 \][/tex]
[tex]\[ x = 19 \][/tex]

The value [tex]\( x = 19 \)[/tex] does not match the solution of [tex]\( P \)[/tex], so [tex]\( Q \)[/tex] is not equivalent to [tex]\( P \)[/tex].

The only option that is equivalent to [tex]\( P \)[/tex] is:

A) [tex]\( S: x = 1 \)[/tex]