Complete the table to determine the number of months that Katrina will need to save to have payment on a car.

[tex]\[
y = 150x + 50
\][/tex]

\begin{tabular}{c|c}
\hline
Steps & Justification \\
\hline
[tex]$2,600 = 150x + 50$[/tex] & Given \\
\hline
[tex]$2,600 - 50 = 150x + 50 - 50$[/tex] & Subtract 50 from both sides \\
\hline
[tex]$2,550 = 150x$[/tex] & Simplification \\
\hline
[tex]$x = \frac{2,550}{150}$[/tex] & Divide both sides by 150 \\
\hline
[tex]$x = 17$[/tex] & Solution \\
\hline
\end{tabular}

Katrina will need to save for 17 months.



Answer :

Certainly! Let's complete the table step-by-step to determine the number of months ([tex]$x$[/tex]) Katrina needs to save \[tex]$2,600 for a car payment. \[ \begin{tabular}{c|c} \hline Steps & Justification \\ \hline $[/tex]2,600 = 150x + 50[tex]$ & Given equation \\ \hline $[/tex]2,600 - 50 = 150x + 50 - 50[tex]$ & Subtract $[/tex]50[tex]$ from both sides to isolate the term with $[/tex]x[tex]$ \\ \hline $[/tex]2,550 = 150x[tex]$ & Simplification \\ \hline $[/tex]\frac{2,550}{150} = \frac{150x}{150}[tex]$ & Divide both sides by $[/tex]150[tex]$ to solve for $[/tex]x[tex]$ \\ \hline $[/tex]x = 17[tex]$ & Simplification \\ \hline \end{tabular} \] Here, we detail the steps to solve the equation given in the problem: 1. Start with the given equation: \[ 2,600 = 150x + 50 \] 2. Subtract 50 from both sides to move the constant term to the left side: \[ 2,600 - 50 = 150x + 50 - 50 \] 3. Simplify both sides: \[ 2,550 = 150x \] 4. Divide both sides by 150 to isolate $[/tex]x$:
[tex]\[ \frac{2,550}{150} = \frac{150x}{150} \][/tex]
5. Simplify the division:
[tex]\[ x = 17 \][/tex]

Therefore, Katrina will need 17 months to save enough for the car payment.