Find the image of the given point under the given translation.

[tex]\[
\begin{array}{c}
P(-5, 7) \quad T(x, y) = (x+5, y-4) \\
P^{\prime} = ([?], [?])
\end{array}
\][/tex]

Enter the numbers that belong in the boxes.



Answer :

Sure, let's find the image of the point [tex]\( P(-5, 7) \)[/tex] under the translation [tex]\( T(x, y) = (x+5, y-4) \)[/tex].

1. Identify the initial coordinates:
- [tex]\( x = -5 \)[/tex]
- [tex]\( y = 7 \)[/tex]

2. Apply the translation transformation to the [tex]\( x \)[/tex]-coordinate:
- The translation rule for the [tex]\( x \)[/tex]-coordinate is [tex]\( x' = x + 5 \)[/tex].
- Substitute [tex]\( x = -5 \)[/tex]:
[tex]\[ x' = -5 + 5 = 0 \][/tex]

3. Apply the translation transformation to the [tex]\( y \)[/tex]-coordinate:
- The translation rule for the [tex]\( y \)[/tex]-coordinate is [tex]\( y' = y - 4 \)[/tex].
- Substitute [tex]\( y = 7 \)[/tex]:
[tex]\[ y' = 7 - 4 = 3 \][/tex]

So, after applying the translation transformation, the new coordinates [tex]\( P' \)[/tex] are:
[tex]\[ P' = (0, 3) \][/tex]

Therefore, the number that belongs in the green box is:
[tex]\[ \boxed{3} \][/tex]