To find the mass of the bicycle, we need to use the relationship between momentum, mass, and velocity. The formula that connects these three quantities is:
[tex]\[ \text{Momentum} = \text{Mass} \times \text{Velocity} \][/tex]
We are given:
- Momentum: [tex]\( 36 \, \text{kg} \cdot \text{m/s} \)[/tex]
- Velocity: [tex]\( 4 \, \text{m/s} \)[/tex]
Our goal is to find the mass. Rearranging the formula to solve for mass, we get:
[tex]\[ \text{Mass} = \frac{\text{Momentum}}{\text{Velocity}} \][/tex]
Substituting in the given values:
[tex]\[ \text{Mass} = \frac{36 \, \text{kg} \cdot \text{m/s}}{4 \, \text{m/s}} \][/tex]
When we divide [tex]\( 36 \, \text{kg} \cdot \text{m/s} \)[/tex] by [tex]\( 4 \, \text{m/s} \)[/tex], we get:
[tex]\[ \text{Mass} = 9 \, \text{kg} \][/tex]
Therefore, the mass of the bicycle is:
[tex]\[ \boxed{9 \, \text{kg}} \][/tex]
This corresponds to the first option provided, [tex]\( 9 \, \text{kg} \)[/tex].