Find the expected value of the winnings from a game that has the following payout probability distribution:

[tex]\[
\begin{array}{l}
\begin{array}{llllll}
\text{Payout (\$)} & -1 & 1 & 3 & 5 & 7
\end{array} \\
\begin{array}{llllll}
\text{Probability} & 0.70 & 0.15 & 0.10 & 0.04 & 0.01
\end{array} \\
\text{Expected Value} = [?]
\end{array}
\][/tex]



Answer :

To find the expected value of the winnings from the game, follow these steps:

1. Identify the payouts and their respective probabilities:

[tex]\[ \begin{array}{cc} \text{Payout (\$)} & \text{Probability} \\ -1 & 0.70 \\ 1 & 0.15 \\ 3 & 0.10 \\ 5 & 0.04 \\ 7 & 0.01 \\ \end{array} \][/tex]

2. Multiply each payout by its corresponding probability:

[tex]\[ \begin{array}{ccc} \text{Payout} & \times & \text{Probability} \\ -1 & \times & 0.70 = -0.70 \\ 1 & \times & 0.15 = 0.15 \\ 3 & \times & 0.10 = 0.30 \\ 5 & \times & 0.04 = 0.20 \\ 7 & \times & 0.01 = 0.07 \\ \end{array} \][/tex]

3. Sum these products to obtain the expected value:

[tex]\[ \text{Expected Value} = (-0.70) + 0.15 + 0.30 + 0.20 + 0.07 \][/tex]

4. Calculate the sum:

[tex]\[ \text{Expected Value} = -0.70 + 0.15 + 0.30 + 0.20 + 0.07 = 0.02 \][/tex]

Hence, the expected value of the winnings from the game is:

[tex]\[ \boxed{0.02} \][/tex]