The work done by the falling counterweight can be calculated by the formula [tex]\( W = Fd \)[/tex]. Use the distance value you calculated above and the force applied by each counterweight to determine the work done by each counterweight. Enter your values into Table 1.

[tex]\[
\begin{tabular}{|c|c|c|}
\hline
\begin{tabular}{c}
Mass of \\
Counterweight (kg)
\end{tabular}
&
\begin{tabular}{c}
Force Applied by \\
Falling Counterweight \\
\( F = ma \)
\end{tabular}
&
\begin{tabular}{c}
Work Done by Falling \\
Counterweight \\
\( W = Fd \)
\end{tabular} \\
\hline
20
&
\( F = 20 \times 9.8 \, \text{m/s}^2 \)
&
\begin{tabular}{l}
\( W = 196 \times 5 \) \\
\( W = 980 \)
\end{tabular} \\
\hline
100
&
& \\
\hline
200
&
& \\
\hline
\end{tabular}
\][/tex]

Table 2: Trebuchet Projectile Test Data

[tex]\[
\begin{tabular}{|c|c|c|}
\hline
Mass of Counterweight (kg)
& \multicolumn{2}{|c|}{\begin{tabular}{c}
Distance Traveled by the \\
Projectile (m)
\end{tabular}} \\
\hline
& Trial 1 & Trial 2 \\
\hline
\end{tabular}
\][/tex]



Answer :

Alright, let's systematically calculate the force applied by each counterweight and the work done by them using the given formulas.

### Step-by-Step Solution:

1. Given values:
- Acceleration due to gravity, [tex]\( g = 9.8 \, \text{m/s}^2 \)[/tex]
- Distance traveled by each counterweight, [tex]\( d = 5 \, \text{m} \)[/tex]
- Masses of the counterweights:
- [tex]\( 20 \, \text{kg} \)[/tex]
- [tex]\( 100 \, \text{kg} \)[/tex]
- [tex]\( 200 \, \text{kg} \)[/tex]

2. Force applied by each counterweight:
- Formula: [tex]\( F = m \cdot g \)[/tex]

- For the [tex]\( 20 \, \text{kg} \)[/tex] counterweight:
[tex]\[ F_{20} = 20 \, \text{kg} \times 9.8 \, \text{m/s}^2 = 196 \, \text{N} \][/tex]
- For the [tex]\( 100 \, \text{kg} \)[/tex] counterweight:
[tex]\[ F_{100} = 100 \, \text{kg} \times 9.8 \, \text{m/s}^2 = 980 \, \text{N} \][/tex]
- For the [tex]\( 200 \, \text{kg} \)[/tex] counterweight:
[tex]\[ F_{200} = 200 \, \text{kg} \times 9.8 \, \text{m/s}^2 = 1960 \, \text{N} \][/tex]

3. Work done by each counterweight:
- Formula: [tex]\( W = F \cdot d \)[/tex]

- For the [tex]\( 20 \, \text{kg} \)[/tex] counterweight:
[tex]\[ W_{20} = 196 \, \text{N} \times 5 \, \text{m} = 980 \, \text{J} \][/tex]
- For the [tex]\( 100 \, \text{kg} \)[/tex] counterweight:
[tex]\[ W_{100} = 980 \, \text{N} \times 5 \, \text{m} = 4900 \, \text{J} \][/tex]
- For the [tex]\( 200 \, \text{kg} \)[/tex] counterweight:
[tex]\[ W_{200} = 1960 \, \text{N} \times 5 \, \text{m} = 9800 \, \text{J} \][/tex]

### Completed Table 1:

[tex]\[ \begin{array}{|c|c|c|} \hline \text{Mass of} & \text{Force Applied by} & \text{Work Done by Falling} \\ \text{Counterweight (kg)} & \text{Falling Counterweight} F = m \cdot a & \text{Counterweight} W = F \cdot d \\ \hline 20 & 196 \, \text{N} & 980 \, \text{J} \\ \hline 100 & 980 \, \text{N} & 4900 \, \text{J} \\ \hline 200 & 1960 \, \text{N} & 9800 \, \text{J} \\ \hline \end{array} \][/tex]

This table includes all the calculated forces and work done values for each of the counterweights.