Use the commutative property to simplify the expression.

[tex]\[
\frac{1}{5} + \frac{3}{4} + \frac{4}{5}
\][/tex]

A. [tex]\(\frac{1}{20}(4+15+16)=\frac{1}{20}(35)=\frac{35}{20}=1 \frac{3}{4}\)[/tex]

B. [tex]\(\frac{1}{5} + \frac{3}{4} + \frac{4}{5} = \frac{19}{20} + \frac{16}{20} = \frac{35}{20} = 1 \frac{3}{4}\)[/tex]

C. [tex]\(\frac{1}{5} + \frac{3}{4} + \frac{4}{5} = \frac{4}{20} + \frac{31}{20} = \frac{35}{20} = 1 \frac{3}{4}\)[/tex]

D. [tex]\(\frac{1}{5} + \frac{4}{5} + \frac{3}{4} = 1 + \frac{3}{4} = 1 \frac{3}{4}\)[/tex]



Answer :

To simplify the expression [tex]\(\frac{1}{5} + \frac{3}{4} + \frac{4}{5}\)[/tex] using the commutative property, follow these steps:

1. Reorder the terms using the commutative property:
The commutative property of addition states that you can add numbers in any order. So, we can reorder the terms as:
[tex]\[ \frac{1}{5} + \frac{4}{5} + \frac{3}{4} \][/tex]

2. Combine like terms:
Now, let's combine the fractions with the same denominator:
[tex]\[ \frac{1}{5} + \frac{4}{5} = \frac{1 + 4}{5} = \frac{5}{5} = 1 \][/tex]

3. Add the remaining fraction:
Next, add the remaining fraction to the result:
[tex]\[ 1 + \frac{3}{4} \][/tex]

4. Convert to a mixed number:
The addition of a whole number and a fraction can be written as:
[tex]\[ 1 + \frac{3}{4} = 1 \frac{3}{4} \][/tex]

Therefore, the correct answer is choice:

D. [tex]\(\frac{1}{5} + \frac{4}{5} + \frac{3}{4} = 1 + \frac{3}{4} = 1 \frac{3}{4}\)[/tex]