Which shows the best use of the associative and commutative properties to make simplifying [tex]\frac{2}{5}-15+8-\frac{1}{5}+3[/tex] easier?

A. [tex]\left[\frac{2}{5}+8+(-15)\right]+\left[3+\left(-\frac{1}{5}\right)\right][/tex]
B. [tex]\left[3+\frac{2}{5}+(-15)\right]+\left[\left(-\frac{1}{5}\right)+8\right][/tex]
C. [tex]\left[\frac{2}{5}+(-15)\right]+\left[8+\left(-\frac{1}{5}\right)+3\right][/tex]
D. [tex]\left[\frac{2}{5}+\left(-\frac{1}{5}\right)\right]+[8+3+(-15)][/tex]



Answer :

To determine which option shows the best use of the associative and commutative properties for simplifying the expression [tex]\(\frac{2}{5} - 15 + 8 - \frac{1}{5} + 3\)[/tex], let's carefully examine each option.

### Option A
[tex]\[ \left[\frac{2}{5} + 8 + (-15)\right] + \left[3 + \left(-\frac{1}{5}\right)\right] \][/tex]

### Option B
[tex]\[ \left[3 + \frac{2}{5} + (-15)\right] + \left[\left(-\frac{1}{5}\right) + 8\right] \][/tex]

### Option C
[tex]\[ \left[\frac{2}{5} + (-15)\right] + \left[8 + \left(-\frac{1}{5}\right) + 3\right] \][/tex]

### Option D
[tex]\[ \left[\frac{2}{5} + \left(-\frac{1}{5}\right)\right] + \left[8 + 3 + (-15)\right] \][/tex]

To identify the best use of associative and commutative properties, we can check how the grouping of terms makes simplification easier:

#### Option A
Grouping [tex]\(\frac{2}{5} + 8 + (-15)\)[/tex] and [tex]\(3 + (-\frac{1}{5})\)[/tex] does help somewhat, but it does not primarily group the similar fraction terms together for easier cancellation.

#### Option B
Grouping [tex]\(3 + \frac{2}{5} + (-15)\)[/tex] and [tex]\(\left(-\frac{1}{5}\right) + 8\)[/tex] again does not prioritize simplifying similar fractional terms first.

#### Option C
Grouping [tex]\(\frac{2}{5} + (-15)\)[/tex] and [tex]\(\left[8 + \left(-\frac{1}{5}\right) + 3\right]\)[/tex] does not make simplifying the fractions straightforward.

#### Option D
Grouping [tex]\(\frac{2}{5} + \left(-\frac{1}{5}\right)\)[/tex] and [tex]\(\left[8 + 3 + (-15)\right]\)[/tex]:

1. [tex]\(\frac{2}{5} + \left(-\frac{1}{5}\right) = \frac{2}{5} - \frac{1}{5} = \frac{1}{5}\)[/tex]
2. [tex]\(8 + 3 + (-15) = 8 + 3 - 15 = -4\)[/tex]

So, by simplifying:
[tex]\[ \frac{1}{5} + (-4) = -3.8 \][/tex]

Therefore, the grouping in option D simplifies the expression most effectively by using the associative and commutative properties to simplify the fractions first and then the integer terms. Therefore, the best answer is:

[tex]\[ \boxed{D} \][/tex]