To solve the inequality [tex]\(-2(5 - 4x) < 6x - 4\)[/tex], follow these detailed steps:
Step 1: Distribute [tex]\(-2\)[/tex] on the left side of the inequality:
[tex]\[ -2(5 - 4x) < 6x - 4 \][/tex]
[tex]\[ -2 \cdot 5 + (-2) \cdot (-4x) < 6x - 4 \][/tex]
[tex]\[ -10 + 8x < 6x - 4 \][/tex]
Step 2: Move all [tex]\(x\)[/tex] terms to one side and constants to the other side:
[tex]\[ -10 + 8x < 6x - 4 \][/tex]
Subtract [tex]\(6x\)[/tex] from both sides:
[tex]\[ 8x - 6x < -4 + 10 \][/tex]
[tex]\[ 2x < 6 \][/tex]
Step 3: Isolate [tex]\(x\)[/tex] by dividing both sides by 2:
[tex]\[ \frac{2x}{2} < \frac{6}{2} \][/tex]
[tex]\[ x < 3 \][/tex]
Therefore, the final step in solving the inequality [tex]\(-2(5 - 4x) < 6x - 4\)[/tex] is:
[tex]\[ x < 3 \][/tex]
So, the correct answer is:
[tex]\[ x < 3 \][/tex]