What is the value of [tex]\( x \)[/tex] in the equation [tex]\( 2.5(6x - 4) = 10 + 4(1.5 + 0.5x) \)[/tex]?

A. [tex]\(\frac{1}{3}\)[/tex]

B. [tex]\(\frac{1}{2}\)[/tex]

C. 2

D. 13



Answer :

To solve the equation [tex]\(2.5(6x - 4) = 10 + 4(1.5 + 0.5x)\)[/tex], we need to carefully follow each step to isolate the variable [tex]\(x\)[/tex]. Here's a detailed, step-by-step solution:

1. Distribute values inside the parentheses:
[tex]\[ 2.5(6x - 4) = 10 + 4(1.5 + 0.5x) \][/tex]
Distribute [tex]\(2.5\)[/tex] on the left-hand side and [tex]\(4\)[/tex] on the right-hand side:
[tex]\[ 2.5 \cdot 6x - 2.5 \cdot 4 = 10 + 4 \cdot 1.5 + 4 \cdot 0.5x \][/tex]
Simplifying these terms, we get:
[tex]\[ 15x - 10 = 10 + 6 + 2x \][/tex]

2. Combine like terms on the right-hand side:
[tex]\[ 15x - 10 = 16 + 2x \][/tex]

3. Isolate the variable [tex]\(x\)[/tex]:
To isolate [tex]\(x\)[/tex], we'll move the [tex]\(2x\)[/tex] term to the left-hand side and the constant term [tex]\(-10\)[/tex] to the right-hand side. Subtract [tex]\(2x\)[/tex] from both sides:
[tex]\[ 15x - 2x - 10 = 16 \][/tex]
This simplifies to:
[tex]\[ 13x - 10 = 16 \][/tex]

4. Solve for [tex]\(x\)[/tex]:
Add [tex]\(10\)[/tex] to both sides to isolate the term with [tex]\(x\)[/tex]:
[tex]\[ 13x = 26 \][/tex]

5. Divide by the coefficient of [tex]\(x\)[/tex] to find its value:
[tex]\[ x = \frac{26}{13} \][/tex]
[tex]\[ x = 2 \][/tex]

So, the value of [tex]\(x\)[/tex] is [tex]\(2\)[/tex].

Among the given answer choices:
[tex]\[ \boxed{2} \][/tex]