17. If [tex]\left[\begin{array}{ll}a & 2 \\ 6 & 5\end{array}\right]+\left[\begin{array}{ll}4 & x \\ 8 & y\end{array}\right]=\left[\begin{array}{ll}6 & 3 \\ 10 & 5\end{array}\right][/tex], find the values of [tex]a[/tex], [tex]x[/tex], and [tex]y[/tex].



Answer :

To solve for the values of [tex]\( a \)[/tex], [tex]\( x \)[/tex], and [tex]\( y \)[/tex] given the equation of matrix addition:
[tex]\[ \left[\begin{array}{cc}a & 2 \\ 6 & 5\end{array}\right] + \left[\begin{array}{cc}4 & x \\ 8 & y\end{array}\right] = \left[\begin{array}{cc}6 & 3 \\ 10 & 5\end{array}\right] \][/tex]

We need to equate the corresponding elements on both sides of the equation. Let's go step-by-step to find each unknown.

1. For the element in the first row, first column:
[tex]\[ a + 4 = 6 \][/tex]
Solving for [tex]\( a \)[/tex]:
[tex]\[ a = 6 - 4 \][/tex]
[tex]\[ a = 2 \][/tex]

2. For the element in the first row, second column:
[tex]\[ 2 + x = 3 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ x = 3 - 2 \][/tex]
[tex]\[ x = 1 \][/tex]

3. For the element in the second row, first column:
[tex]\[ 6 + 8 = 10 \][/tex]
Solving for [tex]\( y \)[/tex]:
[tex]\[ y = 10 - 6 \][/tex]
[tex]\[ y = 4 \][/tex]

So, the values are:
[tex]\[ a = 2, \quad x = 1, \quad y = 4 \][/tex]