A photon has [tex]$3.4 \times 10^{-18}$[/tex] joules of energy. Planck's constant is [tex]$6.63 \times 10^{-34} \, J \cdot s$[/tex].

What is the frequency of the photon?

A. [tex]5.12 \times 10^{-15} \, Hz[/tex]
B. [tex]1.95 \times 10^{16} \, Hz[/tex]
C. [tex]5.12 \times 10^{15} \, Hz[/tex]
D. [tex]1.95 \times 10^{-16} \, Hz[/tex]



Answer :

To determine the frequency of the photon given the energy and Planck's constant, we can use the formula that relates energy ([tex]\(E\)[/tex]) to frequency ([tex]\(f\)[/tex]):

[tex]\[ E = h \cdot f \][/tex]

Here, [tex]\(E\)[/tex] is the energy of the photon, [tex]\(h\)[/tex] is Planck's constant, and [tex]\(f\)[/tex] is the frequency we want to find.

Given:
- Energy ([tex]\(E\)[/tex]) = [tex]\(3.4 \times 10^{-18}\)[/tex] joules
- Planck's constant ([tex]\(h\)[/tex]) = [tex]\(6.63 \times 10^{-34}\)[/tex] joules·seconds

We need to solve for [tex]\(f\)[/tex]:

[tex]\[ f = \frac{E}{h} \][/tex]

Substituting the given values into the equation:

[tex]\[ f = \frac{3.4 \times 10^{-18} \, \text{J}}{6.63 \times 10^{-34} \, \text{J} \cdot \text{s}} \][/tex]

Carrying out the division, we get:

[tex]\[ f = 5.12 \times 10^{15} \, \text{Hz} \][/tex]

Therefore, the frequency of the photon is:

[tex]\[ 5.12 \times 10^{15} \, \text{Hz} \][/tex]

Thus, the correct answer is:
[tex]\[ 5.12 \times 10^{15} \, \text{Hz} \][/tex]