The function [tex]h(x)=\frac{1}{x-4}[/tex] can be expressed in the form [tex]f(g(x))[/tex] where [tex]g(x) = x-4[/tex] and [tex]f(x)[/tex] is defined as:

[tex]
f(x) = \frac{1}{x}
[/tex]



Answer :

To express the function [tex]\( h(x) = \frac{1}{x-4} \)[/tex] in the form [tex]\( f(g(x)) \)[/tex], where [tex]\( g(x) = x-4 \)[/tex], we need to identify what [tex]\( f(x) \)[/tex] should be.

Let's proceed step-by-step to find [tex]\( f(x) \)[/tex]:

1. Identify [tex]\( g(x) \)[/tex]:
We are given that [tex]\( g(x) = x - 4 \)[/tex].

2. Express [tex]\( h(x) \)[/tex] using [tex]\( g(x) \)[/tex]:
We know [tex]\( h(x) = \frac{1}{x-4} \)[/tex].
Notice that [tex]\( x-4 \)[/tex] is actually [tex]\( g(x) \)[/tex]. So we can rewrite [tex]\( h(x) \)[/tex] as:
[tex]\[ h(x) = \frac{1}{g(x)} \][/tex]

3. Determine [tex]\( f(y) \)[/tex]:
We need to find a function [tex]\( f(y) \)[/tex] such that [tex]\( f(g(x)) = h(x) \)[/tex].
From the equation above, it follows that:
[tex]\[ f(g(x)) = \frac{1}{g(x)} \][/tex]
Since [tex]\( g(x) \)[/tex] is just a placeholder representing [tex]\( x-4 \)[/tex], we can say:
[tex]\[ f(y) = \frac{1}{y} \][/tex]
where [tex]\( y = g(x) \)[/tex].

Therefore, the function [tex]\( h(x) = \frac{1}{x-4} \)[/tex] can be expressed as [tex]\( f(g(x)) \)[/tex] where [tex]\( g(x) = x-4 \)[/tex] and:
[tex]\[ f(x) = \frac{1}{x} \][/tex]