If [tex]$2x^{\circ}$[/tex] and [tex]$3x^{\circ}$[/tex] are adjacent angles in a linear pair, find them.

If [tex][tex]$y^{\circ}$[/tex][/tex] and [tex]$48^{\circ}$[/tex] are a pair of complementary angles, find [tex]$y^{\circ}$[/tex].



Answer :

Let's solve the given problems step-by-step to find the values of the angles.

### Part 1: Finding the Angles in the Linear Pair

1. Understanding the Linear Pair:
Two angles form a linear pair if they are adjacent and their measures add up to 180 degrees. So, we have:
[tex]\[ 2x + 3x = 180^\circ \][/tex]

2. Solving for [tex]\( x \)[/tex]:
Combine the like terms on the left side of the equation:
[tex]\[ 5x = 180^\circ \][/tex]
Divide both sides by 5 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{180^\circ}{5} = 36^\circ \][/tex]

3. Finding Each Angle:
Using the value of [tex]\( x \)[/tex]:
- The first angle is [tex]\( 2x \)[/tex]:
[tex]\[ 2x = 2 \times 36^\circ = 72^\circ \][/tex]
- The second angle is [tex]\( 3x \)[/tex]:
[tex]\[ 3x = 3 \times 36^\circ = 108^\circ \][/tex]

So, the angles in the linear pair are [tex]\( 72^\circ \)[/tex] and [tex]\( 108^\circ \)[/tex].

### Part 2: Finding the Complementary Angle

1. Understanding Complementary Angles:
Two angles are complementary if their measures add up to 90 degrees. We are given:
[tex]\[ y + 48^\circ = 90^\circ \][/tex]

2. Solving for [tex]\( y \)[/tex]:
Subtract 48 degrees from both sides:
[tex]\[ y = 90^\circ - 48^\circ = 42^\circ \][/tex]

So, the complementary angle [tex]\( y \)[/tex] is [tex]\( 42^\circ \)[/tex].

### Summary of Results

- The angles in the linear pair are [tex]\( 72^\circ \)[/tex] and [tex]\( 108^\circ \)[/tex].
- The complementary angle [tex]\( y \)[/tex] is [tex]\( 42^\circ \)[/tex].

These are the final answers for the given problems.