Simplify the following:

a) [tex]4^9 \times 4^3[/tex]

b) [tex]6^5 \times 6^2[/tex]

c) [tex]8^6 \div 8[/tex]

d) [tex]7^8 \div 7^6[/tex]



Answer :

Sure! Let's simplify each expression step-by-step.

### Part (a)
Simplify [tex]\(4^9 \times 4^3\)[/tex]:

1. When multiplying powers with the same base, you add the exponents:
[tex]\[ 4^9 \times 4^3 = 4^{9+3} \][/tex]

2. Adding the exponents, we get:
[tex]\[ 4^{9+3} = 4^{12} \][/tex]

3. Calculating [tex]\(4^{12}\)[/tex], we find:
[tex]\[ 4^{12} = 16777216 \][/tex]

So, [tex]\(4^9 \times 4^3 = 16777216\)[/tex].

---

### Part (b)
Simplify [tex]\(6^5 \times 6^2\)[/tex]:

1. When multiplying powers with the same base, you add the exponents:
[tex]\[ 6^5 \times 6^2 = 6^{5+2} \][/tex]

2. Adding the exponents, we get:
[tex]\[ 6^{5+2} = 6^{7} \][/tex]

3. Calculating [tex]\(6^{7}\)[/tex], we find:
[tex]\[ 6^{7} = 279936 \][/tex]

So, [tex]\(6^5 \times 6^2 = 279936\)[/tex].

---

### Part (c)
Simplify [tex]\(8^6 \div 8\)[/tex]:

1. When dividing powers with the same base, you subtract the exponents:
[tex]\[ 8^6 \div 8 = 8^{6-1} \][/tex]

2. Subtracting the exponents, we get:
[tex]\[ 8^{6-1} = 8^{5} \][/tex]

3. Calculating [tex]\(8^{5}\)[/tex], we find:
[tex]\[ 8^{5} = 32768 \][/tex]

So, [tex]\(8^6 \div 8 = 32768\)[/tex].

---

### Part (d)
Simplify [tex]\(7^8 \div 7^6\)[/tex]:

1. When dividing powers with the same base, you subtract the exponents:
[tex]\[ 7^8 \div 7^6 = 7^{8-6} \][/tex]

2. Subtracting the exponents, we get:
[tex]\[ 7^{8-6} = 7^{2} \][/tex]

3. Calculating [tex]\(7^{2}\)[/tex], we find:
[tex]\[ 7^{2} = 49 \][/tex]

So, [tex]\(7^8 \div 7^6 = 49\)[/tex].

---

Therefore, the simplified results are:
a) [tex]\(4^9 \times 4^3 = 16777216\)[/tex]
b) [tex]\(6^5 \times 6^2 = 279936\)[/tex]
c) [tex]\(8^6 \div 8 = 32768\)[/tex]
d) [tex]\(7^8 \div 7^6 = 49\)[/tex]