Fiona draws a circle with a diameter of 14 meters. What is the area of Fiona's circle?

A. [tex]$7 \pi \, m^2$[/tex]

B. [tex]$14 \pi \, m^2$[/tex]

C. [tex]$28 \pi \, m^2$[/tex]

D. [tex]$49 \pi \, m^2$[/tex]



Answer :

To find the area of Fiona's circle, we need to determine the radius first and then use the formula for the area of a circle. Here are the steps to solve this problem:

1. Determine the diameter of the circle.
The diameter given is 14 meters.

2. Calculate the radius of the circle.
The radius [tex]\( r \)[/tex] is half of the diameter. Therefore:
[tex]\[ r = \frac{d}{2} = \frac{14 \, \text{meters}}{2} = 7 \, \text{meters} \][/tex]

3. Use the formula for the area of a circle.
The area [tex]\( A \)[/tex] of a circle is given by:
[tex]\[ A = \pi r^2 \][/tex]

4. Substitute the radius into the formula.
[tex]\[ A = \pi \times (7 \, \text{meters})^2 \][/tex]
[tex]\[ A = \pi \times 49 \, \text{square meters} \][/tex]

5. Simplify the expression.
[tex]\[ A = 49 \pi \, \text{square meters} \][/tex]

Hence, the area of Fiona's circle is [tex]\( 49 \pi \, \text{square meters} \)[/tex].

The correct option is:
[tex]\[ \boxed{49 \pi \, \text{square meters}} \][/tex]