Solve for [tex]$x$[/tex].

[tex]\[ \frac{c-1}{x} + d = cd \][/tex]

A. [tex]\[ \frac{1}{d} \][/tex]

B. [tex]\[ d \][/tex]

C. [tex]\[ \frac{c}{d} \][/tex]



Answer :

Certainly! Let's solve the equation:

[tex]\[ \frac{c-1}{x} + d = c d \][/tex]

Step-by-step:

1. Isolate the fraction term:

Move [tex]\( d \)[/tex] from the left side of the equation to the right side by subtracting [tex]\( d \)[/tex] from both sides:

[tex]\[ \frac{c-1}{x} = c d - d \][/tex]

2. Factor out the common factor [tex]\( d \)[/tex] on the right side:

[tex]\[ c d - d = d (c - 1) \][/tex]

So the equation now is:

[tex]\[ \frac{c-1}{x} = d (c - 1) \][/tex]

3. Assuming [tex]\( c \neq 1 \)[/tex]:

If [tex]\( c = 1 \)[/tex], then the numerator of the fraction is 0, making the left side zero. But assuming [tex]\( c \neq 1 \)[/tex], we can proceed to isolate [tex]\( x \)[/tex].

4. Divide both sides of the equation by [tex]\( c-1 \)[/tex]:

Divide both sides by [tex]\( c-1 \)[/tex] to isolate [tex]\( \frac{1}{x} \)[/tex]:

[tex]\[ \frac{c-1}{x} \div (c-1) = [d (c - 1)] \div (c - 1) \][/tex]

Simplifying, we get:

[tex]\[ \frac{1}{x} = d \][/tex]

5. Solve for [tex]\( x \)[/tex]:

Invert both sides to solve for [tex]\( x \)[/tex]:

[tex]\[ x = \frac{1}{d} \][/tex]

So, the solution to the equation

[tex]\[ \frac{c-1}{x} + d = c d \][/tex]

is

[tex]\[ x = \frac{1}{d} \][/tex]