A triangle has vertices at [tex]$L(2,2)$[/tex], [tex]$M(4,4)$[/tex], and [tex]$N(1,6)$[/tex]. The triangle is transformed according to the rule [tex]$R_0$[/tex], [tex]$180^{\circ}$[/tex].

Which statements are true regarding the transformation? Select three options.

A. The rule for the transformation is [tex]$(x, y) \rightarrow (-x, -y)$[/tex].
B. The coordinates of [tex]$L^{\prime}$[/tex] are [tex]$(-2, -2)$[/tex].
C. The coordinates of [tex]$M^{\prime}$[/tex] are [tex]$(-4, -4)$[/tex].
D. The coordinates of [tex]$N^{\prime}$[/tex] are [tex]$(6, -1)$[/tex].
E. The coordinates of [tex]$N^{\prime}$[/tex] are [tex]$(-1, -6)$[/tex].



Answer :

To solve the problem, let's first understand the transformation rule given. The rule states that a [tex]$180^{\circ}$[/tex] rotation around the origin will transform any point [tex]$(x, y)$[/tex] to [tex]$(-x, -y)$[/tex].

Now, let's apply this transformation rule to each vertex of the triangle:

1. For the vertex [tex]\( L(2, 2) \)[/tex]:
- Applying the transformation rule:
[tex]\[ L' = (-2, -2) \][/tex]
- Therefore, the coordinates of [tex]\( L' \)[/tex] are [tex]\((-2, -2)\)[/tex].

2. For the vertex [tex]\( M(4, 4) \)[/tex]:
- Applying the transformation rule:
[tex]\[ M' = (-4, -4) \][/tex]
- Therefore, the coordinates of [tex]\( M' \)[/tex] are [tex]\((-4, -4)\)[/tex].

3. For the vertex [tex]\( N(1, 6) \)[/tex]:
- Applying the transformation rule:
[tex]\[ N' = (-1, -6) \][/tex]
- Therefore, the coordinates of [tex]\( N' \)[/tex] are [tex]\((-1, -6)\)[/tex].

Given these results, we can now identify the true statements from the options:

- The rule for the transformation is [tex]\((x, y) \rightarrow (-x, -y)\)[/tex].
- The coordinates of [tex]\( L' \)[/tex] are [tex]\((-2, -2)\)[/tex].
- The coordinates of [tex]\( N' \)[/tex] are [tex]\((-1, -6)\)[/tex].

Thus, the three true statements regarding the transformation are:

1. The rule for the transformation is [tex]\((x, y) \rightarrow (-x, -y)\)[/tex].
2. The coordinates of [tex]\( L' \)[/tex] are [tex]\((-2, -2)\)[/tex].
3. The coordinates of [tex]\( N' \)[/tex] are [tex]\((-1, -6)\)[/tex].