Answer :
To find [tex]\( x^2 + y^2 \)[/tex] where [tex]\( x = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} \)[/tex] and [tex]\( y = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} \)[/tex], we will proceed as follows:
1. Establish the expressions for [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ x = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} \][/tex]
[tex]\[ y = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} \][/tex]
2. Square both [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ x^2 = \left( \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} \right)^2 \][/tex]
[tex]\[ y^2 = \left( \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} \right)^2 \][/tex]
3. Simplify [tex]\( x^2 \)[/tex] and [tex]\( y^2 \)[/tex]:
Consider [tex]\( x^2 \)[/tex]:
[tex]\[ x^2 = \frac{(\sqrt{3} + \sqrt{2})^2}{(\sqrt{3} - \sqrt{2})^2} \][/tex]
The numerator [tex]\((\sqrt{3} + \sqrt{2})^2\)[/tex]:
[tex]\[ (\sqrt{3} + \sqrt{2})^2 = 3 + 2\sqrt{6} + 2 \][/tex]
[tex]\[ = 5 + 2\sqrt{6} \][/tex]
The denominator [tex]\((\sqrt{3} - \sqrt{2})^2\)[/tex]:
[tex]\[ (\sqrt{3} - \sqrt{2})^2 = 3 - 2\sqrt{6} + 2 \][/tex]
[tex]\[ = 5 - 2\sqrt{6} \][/tex]
Thus,
[tex]\[ x^2 = \frac{5 + 2\sqrt{6}}{5 - 2\sqrt{6}} \][/tex]
Now, consider [tex]\( y^2 \)[/tex]:
[tex]\[ y^2 = \frac{(\sqrt{3} - \sqrt{2})^2}{(\sqrt{3} + \sqrt{2})^2} \][/tex]
The numerator [tex]\((\sqrt{3} - \sqrt{2})^2\)[/tex]:
[tex]\[ (\sqrt{3} - \sqrt{2})^2 = 3 - 2\sqrt{6} + 2 \][/tex]
[tex]\[ = 5 - 2\sqrt{6} \][/tex]
The denominator [tex]\((\sqrt{3} + \sqrt{2})^2\)[/tex]:
[tex]\[ (\sqrt{3} + \sqrt{2})^2 = 3 + 2\sqrt{6} + 2 \][/tex]
[tex]\[ = 5 + 2\sqrt{6} \][/tex]
Thus,
[tex]\[ y^2 = \frac{5 - 2\sqrt{6}}{5 + 2\sqrt{6}} \][/tex]
4. Add [tex]\( x^2 \)[/tex] and [tex]\( y^2 \)[/tex] together:
[tex]\[ x^2 + y^2 = \frac{5 + 2\sqrt{6}}{5 - 2\sqrt{6}} + \frac{5 - 2\sqrt{6}}{5 + 2\sqrt{6}} \][/tex]
5. Express the result in a simple form:
The fractions [tex]\( \frac{5 + 2\sqrt{6}}{5 - 2\sqrt{6}} \)[/tex] and [tex]\( \frac{5 - 2\sqrt{6}}{5 + 2\sqrt{6}} \)[/tex] are reciprocals of each other. When added, their sum can be expressed as:
[tex]\[ x^2 + y^2 = \frac{(5 + 2\sqrt{6})^2 + (5 - 2\sqrt{6})^2}{(5 - 2\sqrt{6})(5 + 2\sqrt{6})} \][/tex]
Simplifying the denominator:
[tex]\[ (5 - 2\sqrt{6})(5 + 2\sqrt{6}) = 25 - (2\sqrt{6})^2 = 25 - 24 = 1 \][/tex]
Therefore, the sum in the numerator remains unchanged:
[tex]\[ x^2 + y^2 = (5 + 2\sqrt{6})^2 + (5 - 2\sqrt{6})^2 \][/tex]
6. Sum up the numerators:
[tex]\[ (5 + 2\sqrt{6})^2 = 25 + 20\sqrt{6} + 24 = 49 + 20\sqrt{6} \][/tex]
[tex]\[ (5 - 2\sqrt{6})^2 = 25 - 20\sqrt{6} + 24 = 49 - 20\sqrt{6} \][/tex]
Adding these:
[tex]\[ (49 + 20\sqrt{6}) + (49 - 20\sqrt{6}) = 49 + 49 = 98 \][/tex]
Thus,
[tex]\[ x^2 + y^2 = \boxed{98} \][/tex]
1. Establish the expressions for [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ x = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} \][/tex]
[tex]\[ y = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} \][/tex]
2. Square both [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ x^2 = \left( \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} \right)^2 \][/tex]
[tex]\[ y^2 = \left( \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} \right)^2 \][/tex]
3. Simplify [tex]\( x^2 \)[/tex] and [tex]\( y^2 \)[/tex]:
Consider [tex]\( x^2 \)[/tex]:
[tex]\[ x^2 = \frac{(\sqrt{3} + \sqrt{2})^2}{(\sqrt{3} - \sqrt{2})^2} \][/tex]
The numerator [tex]\((\sqrt{3} + \sqrt{2})^2\)[/tex]:
[tex]\[ (\sqrt{3} + \sqrt{2})^2 = 3 + 2\sqrt{6} + 2 \][/tex]
[tex]\[ = 5 + 2\sqrt{6} \][/tex]
The denominator [tex]\((\sqrt{3} - \sqrt{2})^2\)[/tex]:
[tex]\[ (\sqrt{3} - \sqrt{2})^2 = 3 - 2\sqrt{6} + 2 \][/tex]
[tex]\[ = 5 - 2\sqrt{6} \][/tex]
Thus,
[tex]\[ x^2 = \frac{5 + 2\sqrt{6}}{5 - 2\sqrt{6}} \][/tex]
Now, consider [tex]\( y^2 \)[/tex]:
[tex]\[ y^2 = \frac{(\sqrt{3} - \sqrt{2})^2}{(\sqrt{3} + \sqrt{2})^2} \][/tex]
The numerator [tex]\((\sqrt{3} - \sqrt{2})^2\)[/tex]:
[tex]\[ (\sqrt{3} - \sqrt{2})^2 = 3 - 2\sqrt{6} + 2 \][/tex]
[tex]\[ = 5 - 2\sqrt{6} \][/tex]
The denominator [tex]\((\sqrt{3} + \sqrt{2})^2\)[/tex]:
[tex]\[ (\sqrt{3} + \sqrt{2})^2 = 3 + 2\sqrt{6} + 2 \][/tex]
[tex]\[ = 5 + 2\sqrt{6} \][/tex]
Thus,
[tex]\[ y^2 = \frac{5 - 2\sqrt{6}}{5 + 2\sqrt{6}} \][/tex]
4. Add [tex]\( x^2 \)[/tex] and [tex]\( y^2 \)[/tex] together:
[tex]\[ x^2 + y^2 = \frac{5 + 2\sqrt{6}}{5 - 2\sqrt{6}} + \frac{5 - 2\sqrt{6}}{5 + 2\sqrt{6}} \][/tex]
5. Express the result in a simple form:
The fractions [tex]\( \frac{5 + 2\sqrt{6}}{5 - 2\sqrt{6}} \)[/tex] and [tex]\( \frac{5 - 2\sqrt{6}}{5 + 2\sqrt{6}} \)[/tex] are reciprocals of each other. When added, their sum can be expressed as:
[tex]\[ x^2 + y^2 = \frac{(5 + 2\sqrt{6})^2 + (5 - 2\sqrt{6})^2}{(5 - 2\sqrt{6})(5 + 2\sqrt{6})} \][/tex]
Simplifying the denominator:
[tex]\[ (5 - 2\sqrt{6})(5 + 2\sqrt{6}) = 25 - (2\sqrt{6})^2 = 25 - 24 = 1 \][/tex]
Therefore, the sum in the numerator remains unchanged:
[tex]\[ x^2 + y^2 = (5 + 2\sqrt{6})^2 + (5 - 2\sqrt{6})^2 \][/tex]
6. Sum up the numerators:
[tex]\[ (5 + 2\sqrt{6})^2 = 25 + 20\sqrt{6} + 24 = 49 + 20\sqrt{6} \][/tex]
[tex]\[ (5 - 2\sqrt{6})^2 = 25 - 20\sqrt{6} + 24 = 49 - 20\sqrt{6} \][/tex]
Adding these:
[tex]\[ (49 + 20\sqrt{6}) + (49 - 20\sqrt{6}) = 49 + 49 = 98 \][/tex]
Thus,
[tex]\[ x^2 + y^2 = \boxed{98} \][/tex]