Select the correct answer.

Which expression is equivalent to [tex]$32 \sqrt[3]{18 y} \div 8 \sqrt[3]{3 y}$[/tex], if [tex]$y \neq 0$[/tex]?

A. [tex]$12 \sqrt[3]{2 y^2}$[/tex]
B. [tex][tex]$4 \sqrt[3]{6}$[/tex][/tex]
C. [tex]$4 \sqrt[3]{15 y}$[/tex]
D. [tex]$4 \sqrt[3]{6 y}$[/tex]



Answer :

To determine which expression is equivalent to [tex]\( 32 \sqrt[3]{18 y} \div 8 \sqrt[3]{3 y} \)[/tex], let's break down the given expression step-by-step:

1. Simplify the Coefficient:
We start by simplifying the numerical coefficients:
[tex]\[ \frac{32}{8} = 4 \][/tex]

2. Simplify the Cubic Roots:
For the cubic roots, we need to simplify:
[tex]\[ \frac{\sqrt[3]{18 y}}{\sqrt[3]{3 y}} \][/tex]
Using the property of radicals, we can write this as a single cubic root:
[tex]\[ \sqrt[3]{\frac{18 y}{3 y}} \][/tex]
Inside the cubic root, the [tex]\( y \)[/tex] terms cancel out, leaving:
[tex]\[ \sqrt[3]{\frac{18}{3}} = \sqrt[3]{6} \][/tex]

3. Combine the Simplified Components:
Now we combine the simplified coefficient with the simplified cubic root:
[tex]\[ 4 \cdot \sqrt[3]{6 y} \][/tex]

Thus, the expression [tex]\( 32 \sqrt[3]{18 y} \div 8 \sqrt[3]{3 y} \)[/tex] is equivalent to [tex]\( 4 \sqrt[3]{6 y} \)[/tex].

Therefore, the correct choice is:
[tex]\[ \boxed{4 \sqrt[3]{6 y}} \][/tex]
This matches option D.