Solve for [tex]\( x \)[/tex]:
[tex]\[ 3x = 6x - 2 \][/tex]

---

Format the following question or task so that it is easier to read.
Fix any grammar or spelling errors.
Remove phrases that are not part of the question.
Do not remove or change LaTeX formatting.
Do not change or remove [tex] [/tex] tags.
If the question is nonsense, rewrite it so that it makes sense.
-----
[tex]\[ \left(x^2 + y^2\right) \sin \beta \cdot \cos \beta + xy = 0 \][/tex]
-----

Response:
[tex]\[ \left(x^2 + y^2\right) \sin \beta \cdot \cos \beta + xy = 0 \][/tex]



Answer :

Certainly! Let's solve the equation [tex]\((x^2 + y^2) \sin \beta \cos \beta + xy = 0\)[/tex], and express [tex]\(x\)[/tex] in terms of [tex]\(y\)[/tex] and [tex]\(\beta\)[/tex].

### Step-by-Step Solution:

1. Original Equation:
[tex]\[ (x^2 + y^2) \sin \beta \cos \beta + xy = 0 \][/tex]

2. Rearrange to Isolate [tex]\(xy\)[/tex]:
[tex]\[ (x^2 + y^2) \sin \beta \cos \beta = -xy \][/tex]

3. Divide Both Sides by [tex]\(y\)[/tex]:
[tex]\[ \left(\frac{x^2}{y} + y\right) \sin \beta \cos \beta = -x \][/tex]

4. Substitute Example Values:
- Let [tex]\(y = 1\)[/tex] (an example value for [tex]\(y\)[/tex]).
- Let [tex]\(\beta = \frac{\pi}{4}\)[/tex] (an example value for [tex]\(\beta\)[/tex], which is 45 degrees).

Calculate [tex]\(\sin \beta\)[/tex] and [tex]\(\cos \beta\)[/tex]:
- [tex]\(\sin \beta = \sin \left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \approx 0.7071\)[/tex]
- [tex]\(\cos \beta = \cos \left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \approx 0.7071\)[/tex]

5. Insert Calculated Values:
[tex]\[ \left(\frac{x^2}{1} + 1\right) \left(0.7071 \cdot 0.7071\right) = -x \][/tex]

Simplify:
[tex]\[ (x^2 + 1) \cdot 0.5 = -x \][/tex]

6. Rewrite in Quadratic Form [tex]\(ax^2 + bx + c = 0\)[/tex]:
[tex]\[ 0.5x^2 + x + 0.5 = 0 \][/tex]

Here:
- [tex]\(a = 0.5\)[/tex]
- [tex]\(b = 1\)[/tex]
- [tex]\(c = 0.5\)[/tex]

7. Find the Discriminant:
[tex]\[ \Delta = b^2 - 4ac = 1^2 - 4(0.5)(0.5) = 1 - 1 = 0 \][/tex]

8. Since the Discriminant is Zero:
The quadratic equation has exactly one real solution (a repeated root).

9. Use the Quadratic Formula [tex]\(x = \frac{-b \pm \sqrt{\Delta}}{2a}\)[/tex]:
[tex]\[ x = \frac{-1 \pm \sqrt{0}}{2 \cdot 0.5} = \frac{-1 \pm 0}{1} = -1 \][/tex]

### Summary:
- [tex]\(\sin \beta = 0.7071\)[/tex]
- [tex]\(\cos \beta = 0.7071\)[/tex]
- Coefficients: [tex]\(a = 0.5, b = 1, c = 0.5\)[/tex]
- Discriminant: [tex]\(\Delta = 0\)[/tex]
- Solutions for [tex]\(x\)[/tex]: [tex]\(x = -1.0\)[/tex] (repeated root)

Thus, the equation [tex]\((x^2 + y^2) \sin \beta \cos \beta + xy = 0\)[/tex] yields the solutions:
[tex]\[ x = -1.0 \][/tex]

This detailed solution provides the derived values step-by-step.