Determine the solution to the inequality.

[tex]\[ |4x - 4| \geq 8 \][/tex]

A. [tex]\( x \leq -1 \)[/tex] or [tex]\( x \geq 3 \)[/tex]

B. [tex]\( x \leq -2 \)[/tex] or [tex]\( x \geq 3 \)[/tex]

C. [tex]\( x \leq -3 \)[/tex] or [tex]\( x \geq 4 \)[/tex]

D. [tex]\( x \leq -4 \)[/tex] or [tex]\( x \geq 4 \)[/tex]



Answer :

To determine the solution to the inequality [tex]\(|4x - 4| \geq 8\)[/tex], we will break it down step-by-step:

### Step 1: Understanding the Absolute Value Inequality
The given inequality is [tex]\(|4x - 4| \geq 8\)[/tex]. An inequality involving an absolute value, [tex]\(|A| \geq k\)[/tex], where [tex]\(k\)[/tex] is a positive constant, can be split into two inequalities:
[tex]\[ A \leq -k \quad \text{or} \quad A \geq k \][/tex]

### Step 2: Splitting the Inequality
For our inequality [tex]\(|4x - 4| \geq 8\)[/tex], let's set [tex]\(A = 4x - 4\)[/tex] and [tex]\(k = 8\)[/tex]. Therefore, we have two cases:
[tex]\[ 4x - 4 \leq -8 \quad \text{or} \quad 4x - 4 \geq 8 \][/tex]

### Step 3: Solving Each Case
We will solve each inequality separately:

1. First case: [tex]\(4x - 4 \leq -8\)[/tex]
[tex]\[ 4x - 4 \leq -8 \\ 4x \leq -8 + 4 \\ 4x \leq -4 \\ x \leq -1 \][/tex]

2. Second case: [tex]\(4x - 4 \geq 8\)[/tex]
[tex]\[ 4x - 4 \geq 8 \\ 4x \geq 8 + 4 \\ 4x \geq 12 \\ x \geq 3 \][/tex]

### Step 4: Combining the Results
The solutions to the two inequalities are:
- [tex]\(x \leq -1\)[/tex]
- [tex]\(x \geq 3\)[/tex]

Therefore, the solution to the original inequality [tex]\(|4x - 4| \geq 8\)[/tex] is:
[tex]\[ x \leq -1 \quad \text{or} \quad x \geq 3 \][/tex]

### Conclusion
After solving the inequality, we find that the correct solution to the inequality [tex]\(|4x - 4| \geq 8\)[/tex] is:
[tex]\[ x \leq -1 \quad \text{or} \quad x \geq 3 \][/tex]

Hence, the correct answer is:
[tex]\[ x \leq -1 \quad \text{or} \quad x \geq 3 \][/tex]