Solve the inequality [tex]\frac{4}{3}\left|\frac{1}{4} x + 3\right| \ \textless \ 4[/tex]

A. [tex]x \ \textgreater \ -13[/tex] and [tex]x \ \textless \ -11[/tex]

B. [tex]x \ \textless \ -13[/tex] and [tex]x \ \textgreater \ -11[/tex]

C. [tex]x \ \textgreater \ -24[/tex] and [tex]x \ \textless \ 0[/tex]

D. [tex]x \ \textgreater \ -24[/tex] and [tex]x \ \textgreater \ 0[/tex]



Answer :

To solve the inequality [tex]\(\frac{4}{3} \left| \frac{1}{4} x + 3 \right| < 4\)[/tex], we will follow these detailed steps:

1. Isolate the Absolute Value Expression:

[tex]\[ \frac{4}{3} \left| \frac{1}{4} x + 3 \right| < 4 \][/tex]

Multiply both sides of the inequality by [tex]\(\frac{3}{4}\)[/tex]:

[tex]\[ \left| \frac{1}{4} x + 3 \right| < 3 \][/tex]

2. Remove the Absolute Value:

Recall that [tex]\(|A| < B\)[/tex] if and only if [tex]\(-B < A < B\)[/tex]. So:

[tex]\[ -3 < \frac{1}{4} x + 3 < 3 \][/tex]

3. Solve the Compound Inequality:

Split the compound inequality into two parts and solve each part separately.

For the left part:

[tex]\[ -3 < \frac{1}{4} x + 3 \][/tex]

Subtract 3 from both sides:

[tex]\[ -6 < \frac{1}{4} x \][/tex]

Multiply by 4:

[tex]\[ -24 < x \][/tex]

This simplifies to:

[tex]\[ x > -24 \][/tex]

For the right part:

[tex]\[ \frac{1}{4} x + 3 < 3 \][/tex]

Subtract 3 from both sides:

[tex]\[ \frac{1}{4} x < 0 \][/tex]

Multiply by 4:

[tex]\[ x < 0 \][/tex]

4. Combine the Results:

Combine the two parts of the compound inequality:

[tex]\[ -24 < x < 0 \][/tex]

Which can be rewritten as:

[tex]\[ x > -24 \quad \text{and} \quad x < 0 \][/tex]

Therefore, the solution to the inequality [tex]\(\frac{4}{3} \left| \frac{1}{4} x + 3 \right| < 4\)[/tex] is:

[tex]\[ x > -24 \quad \text{and} \quad x < 0 \][/tex]

So the correct answer is:

[tex]\[ \boxed{x > -24 \text{ and } x < 0} \][/tex]