Answered

Select the correct answer.

What is the force of gravity between Earth ([tex]\(6.0 \times 10^{24}\)[/tex] kilograms) and Venus ([tex]\(4.88 \times 10^{24}\)[/tex] kilograms)? The distance between the two planets is about [tex]\(3.8 \times 10^{10}\)[/tex] meters. (The value of [tex]\(G\)[/tex] is [tex]\(6.673 \times 10^{-11}\)[/tex] newton meter[tex]\(^2/\)[/tex]kilogram[tex]\(^2\)[/tex].)

A. 13.52 newtons

B. 51.39 newtons

C. [tex]\(13.52 \times 10^{17}\)[/tex] newtons

D. [tex]\(51.39 \times 10^{17}\)[/tex] newtons



Answer :

To determine the gravitational force between Earth and Venus, we need to use Newton's Law of Universal Gravitation, which is defined by the equation:

[tex]\[ F = \frac{G \cdot m_1 \cdot m_2}{r^2} \][/tex]

where:
- [tex]\( F \)[/tex] is the force of gravity,
- [tex]\( G \)[/tex] is the gravitational constant ([tex]\(6.673 \times 10^{-11} \)[/tex] N m[tex]\(^2\)[/tex] / kg[tex]\(^2\)[/tex]),
- [tex]\( m_1 \)[/tex] is the mass of the first object (Earth, [tex]\(6.0 \times 10^{24}\)[/tex] kg),
- [tex]\( m_2 \)[/tex] is the mass of the second object (Venus, [tex]\(4.88 \times 10^{24}\)[/tex] kg),
- [tex]\( r \)[/tex] is the distance between the centers of the two objects ([tex]\(3.8 \times 10^{10}\)[/tex] meters).

Plugging the values into the equation, we get:

[tex]\[ F = \frac{(6.673 \times 10^{-11}) \cdot (6.0 \times 10^{24}) \cdot (4.88 \times 10^{24})}{(3.8 \times 10^{10})^2} \][/tex]

Performing the calculations step-by-step:

1. Multiply the masses of Earth and Venus:
[tex]\[ 6.0 \times 10^{24} \times 4.88 \times 10^{24} = 2.928 \times 10^{49} \][/tex]

2. Multiply this result by the gravitational constant:
[tex]\[ 6.673 \times 10^{-11} \times 2.928 \times 10^{49} = 1.953624 \times 10^{39} \][/tex]

3. Square the distance between Earth and Venus:
[tex]\[ (3.8 \times 10^{10})^2 = 1.444 \times 10^{21} \][/tex]

4. Finally, divide the product from step 2 by the result from step 3:
[tex]\[ \frac{1.953624 \times 10^{39}}{1.444 \times 10^{21}} = 1.3530847645429363 \times 10^{18} \][/tex]

So, the gravitational force between Earth and Venus is:

[tex]\[ F = 1.353 \times 10^{18} \text{ newtons} \][/tex]

Therefore, the correct answer is:

C. [tex]\( 13.52 \times 10^{17} \)[/tex] newtons