The graph of [tex]$f(x)=-(x+3)^2$[/tex] is shown in the [tex]$xy$[/tex]-plane. What are the coordinates of the zero(s) of [tex][tex]$f$[/tex][/tex]?

Choose one answer:

A. [tex](-3,0)[/tex] only

B. [tex](0,-9)[/tex] only

C. [tex](0,-3)[/tex] only

D. [tex](-3,0)[/tex] and [tex](3,0)[/tex]



Answer :

To determine the coordinates of the zero(s) of the function [tex]\(f(x) = -(x + 3)^2\)[/tex], we need to find the values of [tex]\(x\)[/tex] for which [tex]\(f(x) = 0\)[/tex].

Let's solve the equation [tex]\(f(x) = 0\)[/tex]:

1. Set the function equal to zero:
[tex]\[ -(x + 3)^2 = 0 \][/tex]

2. Eliminate the negative sign (it does not affect the equality):
[tex]\[ (x + 3)^2 = 0 \][/tex]

3. Solve for [tex]\(x\)[/tex]:
[tex]\[ (x + 3)^2 = 0 \implies x + 3 = 0 \implies x = -3 \][/tex]

The value of [tex]\(x\)[/tex] at which the function [tex]\(f(x) = 0\)[/tex] is [tex]\(x = -3\)[/tex].

Now, find the corresponding [tex]\(y\)[/tex]-coordinate by evaluating [tex]\(f(x)\)[/tex] at [tex]\(x = -3\)[/tex]:
[tex]\[ f(-3) = -( (-3) + 3 )^2 = -(0)^2 = 0 \][/tex]

Therefore, the function [tex]\(f(x) = -(x + 3)^2\)[/tex] has a zero at the coordinate [tex]\((-3,0)\)[/tex].

Given the options, the correct answer is:

(A) [tex]\((-3, 0)\)[/tex] only