Which formulas can be used to find the surface area of a right prism where [tex]\(p\)[/tex] is the perimeter of the base, [tex]\(h\)[/tex] is the height of the prism, [tex]\(BA\)[/tex] is the area of the bases, and [tex]\(LA\)[/tex] is the lateral area?

Check all that apply.
A. [tex]\(SA = BA - \angle A\)[/tex]
B. [tex]\(SA = BA + \angle A\)[/tex]
C. [tex]\(SA = \frac{1}{2}BA + LA\)[/tex]
D. [tex]\(SA = BA + ph\)[/tex]
E. [tex]\(SA = p + \angle A\)[/tex]



Answer :

To determine which formulas can correctly be used to find the surface area (SA) of a right prism, we need to remember the key components involved in calculating the surface area of a right prism.

The surface area [tex]\( SA \)[/tex] of a right prism is given by the sum of:
1. The areas of the two bases ([tex]\( B_A \)[/tex])
2. The lateral area ([tex]\( LA \)[/tex]), which is the perimeter of the base times the height of the prism ([tex]\( p \times h \)[/tex])

The valid formulas for the surface area of the prism must incorporate these components correctly. Let's analyze each option:

A. [tex]\( SA = B_A - \angle A \)[/tex]

- This formula is incorrect because subtracting an angle (given as [tex]\(\angle A\)[/tex]) makes no sense in the context of the surface area calculation for a prism.

B. [tex]\( SA = B_A + \angle A \)[/tex]

- This formula is correct because here [tex]\(\angle A\)[/tex] appears to be a symbol for lateral area (LA). Therefore, this formula simplifies to [tex]\( SA = B_A + LA \)[/tex], which is indeed a standard formula for calculating the surface area of a right prism.

C. [tex]\( SA = \frac{1}{2} B_A + LA \)[/tex]

- This formula is incorrect because halving the base area ([tex]\(B_A\)[/tex]) is not part of the standard surface area formula for a right prism.

D. [tex]\( SA = B_A + p \times h \)[/tex]

- This formula is correct because it correctly identifies the two contributing areas to the surface area: the area of the bases ([tex]\( B_A \)[/tex]) and the lateral area ([tex]\( p \times h \)[/tex]).

E. [tex]\( SA = p + \angle A \)[/tex]

- This formula is incorrect because it incorrectly mixes the perimeter ([tex]\( p \)[/tex]) and an angle (again [tex]\( \angle A \)[/tex] which could be implying [tex]\( LA \)[/tex]), and misses out the area of the bases.

Thus, the valid formulas to find the surface area of a right prism are:

[tex]\[ \text{B: } SA = B_A + LA \][/tex]
[tex]\[ \text{D: } SA = B_A + p \times h \][/tex]

So, the correct answer is:

[tex]\[ [2, 4] \][/tex]