Two jousts are 120 meters apart, and the height of one is double that of the other. From the midpoint of the line joining their feet, an observer finds the angular elevation of their tops to be complementary. Find the height of the shorter post.



Answer :

To solve this problem, let's start by identifying and setting up the variables:

1. Let [tex]\( h \)[/tex] be the height of the shorter post.
2. Therefore, the height of the taller post is [tex]\( 2h \)[/tex].
3. The distance between the posts is 120 meters. So, from the midpoint, the horizontal distance to each post is [tex]\( 60 \)[/tex] meters.

Using the information provided:
- From the midpoint of the 120-meter distance, the observer sees the tops of the posts at complementary angles.
- Complementary angles mean that the sum of the two angles is [tex]\( 90^\circ \)[/tex] or [tex]\( \frac{\pi}{2} \)[/tex] radians.

Let's denote the angle of elevation to the top of the shorter post as [tex]\( \theta \)[/tex].
Then, the angle of elevation to the top of the taller post is [tex]\( 90^\circ - \theta \)[/tex].

Using trigonometric relationships, we have:

1. For the shorter post:
[tex]\[ \tan(\theta) = \frac{h}{60} \][/tex]

2. For the taller post and using complementary angles [tex]\( 90^\circ - \theta \)[/tex]:
[tex]\[ \tan(90^\circ - \theta) = \cot(\theta) = \frac{1}{\tan(\theta)} = \frac{1}{\frac{h}{60}} = \frac{60}{h} \][/tex]

But at the same time, we know:
[tex]\[ \tan(90^\circ - \theta) = \frac{\text{height of taller post}}{\text{horizontal distance}} \][/tex]
[tex]\[ \text{height of taller post} = 2h \][/tex]
[tex]\[ \tan(90^\circ - \theta) = \frac{2h}{60} = \frac{h}{30} \][/tex]

Setting the two expressions for [tex]\( \tan(90^\circ - \theta) \)[/tex] equal, we get:
[tex]\[ \frac{60}{h} = \frac{h}{30} \][/tex]

Solving for [tex]\( h \)[/tex]:
[tex]\[ \frac{60}{h} = \frac{h}{30} \][/tex]
[tex]\[ 60 \times 30 = h \times h \][/tex]
[tex]\[ 1800 = h^2 \][/tex]
[tex]\[ h = \sqrt{1800} \][/tex]
[tex]\[ h = \sqrt{36 \cdot 50} \][/tex]
[tex]\[ h = \sqrt{36} \cdot \sqrt{50} \][/tex]
[tex]\[ h = 6 \cdot \sqrt{50} \][/tex]
[tex]\[ h = 6 \cdot \sqrt{25 \cdot 2} \][/tex]
[tex]\[ h = 6 \cdot 5 \cdot \sqrt{2} \][/tex]
[tex]\[ h = 30\sqrt{2} \][/tex]

Therefore, the height of the shorter post is [tex]\( 30\sqrt{2} \)[/tex] meters.