Determine the axis of symmetry for the function [tex]$f(x)=3(x+4)^2-6$[/tex].

A. [tex]x=-4[/tex]
B. [tex]x=4[/tex]
C. [tex]x=-6[/tex]
D. [tex]x=6[/tex]



Answer :

To determine the axis of symmetry for the quadratic function [tex]\( f(x) = 3(x + 4)^2 - 6 \)[/tex], we begin by identifying the standard form of a quadratic function.

The standard form of a quadratic function is:
[tex]\[ f(x) = a(x - h)^2 + k \][/tex]
where [tex]\((h, k)\)[/tex] is the vertex of the parabola, and the line [tex]\( x = h \)[/tex] is the axis of symmetry.

First, let's compare the given function with the standard form:

1. The given function is:
[tex]\[ f(x) = 3(x + 4)^2 - 6 \][/tex]

2. Express the function in the form [tex]\( (x - h) \)[/tex]:
[tex]\[ f(x) = 3(x - (-4))^2 - 6 \][/tex]

In this form, it is clear that [tex]\( h = -4 \)[/tex].

Therefore, the axis of symmetry for the function [tex]\( f(x) = 3(x + 4)^2 - 6 \)[/tex] is given by the line [tex]\( x = h \)[/tex].

So, the axis of symmetry is:
[tex]\[ x = -4 \][/tex]

Among the provided options:
- [tex]\( x = -4 \)[/tex]
- [tex]\( x = 4 \)[/tex]
- [tex]\( x = -6 \)[/tex]
- [tex]\( x = 6 \)[/tex]

The correct answer is:
[tex]\[ x = -4 \][/tex]