Find the mean for the data items in the given frequency distribution.

[tex]\[
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline
Score, $x$ & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
Frequency, $f$ & 3 & 5 & 6 & 3 & 3 & 3 & 5 & 2 \\
\hline
\end{tabular}
\][/tex]

The mean is [tex]$\square$[/tex] (Round to 3 decimal places as needed.)



Answer :

To find the mean for the given frequency distribution, follow these steps:

1. List the scores and their corresponding frequencies:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|c|} \hline \text{Score, } x & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline \text{Frequency, } f & 3 & 5 & 6 & 3 & 3 & 3 & 5 & 2 \\ \hline \end{array} \][/tex]

2. Find the sum of the product of each score and its corresponding frequency:
[tex]\[ \sum (x \cdot f) = (1 \cdot 3) + (2 \cdot 5) + (3 \cdot 6) + (4 \cdot 3) + (5 \cdot 3) + (6 \cdot 3) + (7 \cdot 5) + (8 \cdot 2) \][/tex]
[tex]\[ = 3 + 10 + 18 + 12 + 15 + 18 + 35 + 16 = 127 \][/tex]

3. Find the total frequency:
[tex]\[ \sum f = 3 + 5 + 6 + 3 + 3 + 3 + 5 + 2 = 30 \][/tex]

4. Calculate the mean:
[tex]\[ \text{Mean} = \frac{\sum (x \cdot f)}{\sum f} = \frac{127}{30} \][/tex]

5. Round the mean to three decimal places:
[tex]\[ \frac{127}{30} \approx 4.233 \][/tex]

So, the mean of the given frequency distribution is [tex]\( \boxed{4.233} \)[/tex].