Answer :

To simplify the expression [tex]\(\frac{\tan 9x - \tan 5x}{1 + \tan 9x \tan 5x}\)[/tex], we will use a known tangent subtraction formula.

The tangent subtraction formula states:
[tex]\[ \tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B} \][/tex]

In our given problem, we can identify [tex]\(A\)[/tex] and [tex]\(B\)[/tex] as follows:
- [tex]\(A = 9x\)[/tex]
- [tex]\(B = 5x\)[/tex]

Using the tangent subtraction formula:
[tex]\[ \tan(9x - 5x) = \frac{\tan 9x - \tan 5x}{1 + \tan 9x \tan 5x} \][/tex]

Simplifying the right-hand side:

[tex]\[ \tan(9x - 5x) = \frac{\tan 9x - \tan 5x}{1 + \tan 9x \tan 5x} \][/tex]

We know:
[tex]\[ 9x - 5x = 4x \][/tex]

Therefore:

[tex]\[ \tan(4x) = \frac{\tan 9x - \tan 5x}{1 + \tan 9x \tan 5x} \][/tex]

Thus, the expression [tex]\(\frac{\tan 9x - \tan 5x}{1 + \tan 9x \tan 5x}\)[/tex] simplifies to:

[tex]\[ \tan(4x) \][/tex]

So, the simplified form of the given expression is:

[tex]\[ \tan(4x) \][/tex]