Convert the angle to radians. Leave the answer as a multiple of [tex]\pi[/tex].

[tex]\[36^{\circ}\][/tex]

A. [tex]\(\frac{\pi}{7}\)[/tex]
B. [tex]\(\frac{\pi}{6}\)[/tex]
C. [tex]\(\frac{\pi}{5}\)[/tex]
D. [tex]\(\frac{\pi}{4}\)[/tex]

Please select the best answer from the choices provided:
A
B
C
D



Answer :

To convert an angle from degrees to radians, we use the conversion factor [tex]\(\frac{\pi}{180}\)[/tex]. Specifically, to convert [tex]\(36^\circ\)[/tex] to radians:

1. Start with the given angle in degrees: [tex]\(36^\circ\)[/tex].
2. Use the conversion factor [tex]\(\frac{\pi}{180}\)[/tex]:
[tex]\[ 36^\circ \times \frac{\pi}{180} \][/tex]
3. Simplify the expression:
[tex]\[ 36 \times \frac{\pi}{180} = \frac{36\pi}{180} \][/tex]

4. Simplify the fraction [tex]\(\frac{36}{180}\)[/tex] by dividing both the numerator and the denominator by their greatest common divisor, which is 36:
[tex]\[ \frac{36\pi}{180} = \frac{36 \div 36 \pi}{180 \div 36} = \frac{\pi}{5} \][/tex]

Thus, [tex]\(36^\circ\)[/tex] in radians, as a multiple of [tex]\(\pi\)[/tex], is [tex]\(\frac{\pi}{5}\)[/tex].

Therefore, the correct answer is:
C