Answer :
Sure, let's simplify the given expression step by step. We have:
[tex]\[ \frac{\left(2 x^5 y^7\right)\left(-5 x^4 z^{-5}\right)}{y^{12} z^6} \][/tex]
Step 1: Simplify the numerator.
First, multiply the terms in the numerator:
[tex]\[ \left(2 x^5 y^7\right)\left(-5 x^4 z^{-5}\right) \][/tex]
To multiply these, combine the coefficients and the variables with the same base:
[tex]\[ 2 \cdot -5 = -10 \][/tex]
For the exponents, we add the exponents of the same variables:
[tex]\[ x^{5+4} = x^9 \][/tex]
[tex]\[ y^{7} \][/tex]
[tex]\[ z^{-5} \][/tex]
So, the simplified numerator is:
[tex]\[ -10 x^9 y^7 z^{-5} \][/tex]
Step 2: Combine with the denominator.
Next, we divide the simplified numerator by the denominator:
[tex]\[ \frac{-10 x^9 y^7 z^{-5}}{y^{12} z^6} \][/tex]
For the variables in the numerator and the denominator, we subtract the exponents of the same bases:
[tex]\[ y^{7-12} = y^{-5} \][/tex]
[tex]\[ z^{-5-6} = z^{-11} \][/tex]
So, now we have:
[tex]\[ -10 x^9 y^{-5} z^{-11} \][/tex]
Step 3: Convert negative exponents to positive by moving them to the denominator.
[tex]\[ y^{-5} = \frac{1}{y^5} \][/tex]
[tex]\[ z^{-11} = \frac{1}{z^{11}} \][/tex]
So, the simplified expression is:
[tex]\[ \frac{-10 x^9}{y^5 z^{11}} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{-\frac{10 x^9}{y^5 z^{11}}} \][/tex]
From the given options, this matches:
D. [tex]\(\boxed{-\frac{10 x^9}{y^5 z^{11}}}\)[/tex]
[tex]\[ \frac{\left(2 x^5 y^7\right)\left(-5 x^4 z^{-5}\right)}{y^{12} z^6} \][/tex]
Step 1: Simplify the numerator.
First, multiply the terms in the numerator:
[tex]\[ \left(2 x^5 y^7\right)\left(-5 x^4 z^{-5}\right) \][/tex]
To multiply these, combine the coefficients and the variables with the same base:
[tex]\[ 2 \cdot -5 = -10 \][/tex]
For the exponents, we add the exponents of the same variables:
[tex]\[ x^{5+4} = x^9 \][/tex]
[tex]\[ y^{7} \][/tex]
[tex]\[ z^{-5} \][/tex]
So, the simplified numerator is:
[tex]\[ -10 x^9 y^7 z^{-5} \][/tex]
Step 2: Combine with the denominator.
Next, we divide the simplified numerator by the denominator:
[tex]\[ \frac{-10 x^9 y^7 z^{-5}}{y^{12} z^6} \][/tex]
For the variables in the numerator and the denominator, we subtract the exponents of the same bases:
[tex]\[ y^{7-12} = y^{-5} \][/tex]
[tex]\[ z^{-5-6} = z^{-11} \][/tex]
So, now we have:
[tex]\[ -10 x^9 y^{-5} z^{-11} \][/tex]
Step 3: Convert negative exponents to positive by moving them to the denominator.
[tex]\[ y^{-5} = \frac{1}{y^5} \][/tex]
[tex]\[ z^{-11} = \frac{1}{z^{11}} \][/tex]
So, the simplified expression is:
[tex]\[ \frac{-10 x^9}{y^5 z^{11}} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{-\frac{10 x^9}{y^5 z^{11}}} \][/tex]
From the given options, this matches:
D. [tex]\(\boxed{-\frac{10 x^9}{y^5 z^{11}}}\)[/tex]