The terminal side of an angle in standard position passes through [tex]\( P(-3, -4) \)[/tex]. What is the value of [tex]\( \tan \theta \)[/tex]?

A. [tex]\( \tan \theta = -\frac{4}{3} \)[/tex]
B. [tex]\( \tan \theta = -\frac{3}{4} \)[/tex]
C. [tex]\( \tan \theta = \frac{3}{4} \)[/tex]
D. [tex]\( \tan \theta = \frac{4}{3} \)[/tex]



Answer :

To find the value of [tex]\(\tan \theta\)[/tex], we need to understand the relationship between the coordinates of the point [tex]\( P \)[/tex] and the tangent function.

The coordinates of the point [tex]\( P \)[/tex] are [tex]\((-3, -4)\)[/tex].

The tangent of an angle [tex]\(\theta\)[/tex] in standard position, where the terminal side of the angle passes through the point [tex]\( P(x, y) \)[/tex], is given by:
[tex]\[ \tan \theta = \frac{y}{x} \][/tex]

Let's apply this formula to the coordinates given:
[tex]\[ x = -3 \quad \text{and} \quad y = -4 \][/tex]

Now, substitute these values into the formula:
[tex]\[ \tan \theta = \frac{y}{x} = \frac{-4}{-3} \][/tex]

Simplifying the fraction:
[tex]\[ \tan \theta = \frac{4}{3} \][/tex]

Therefore, the value of [tex]\(\tan \theta\)[/tex] is:
[tex]\[ \tan \theta = \frac{4}{3} \][/tex]

So, the correct answer from the given choices is:
[tex]\[ \tan \theta = \frac{4}{3} \][/tex]