Type the correct answer in each box. Use T for true and F for false.

Complete the truth table for the inverse of a conditional statement.
\begin{tabular}{|c|c|c|c|}
\hline
p & q & [tex]$p \rightarrow q$[/tex] & [tex]$\sim p \rightarrow \sim q$[/tex] \\
\hline
T & T & T & [tex]$\square$[/tex] \\
\hline
T & F & F & [tex]$\square$[/tex] \\
\hline
F & T & T & [tex]$\square$[/tex] \\
\hline
F & F & T & [tex]$\square$[/tex] \\
\hline
\end{tabular}



Answer :

To complete the truth table for the inverse of a conditional statement (¬p ➔ ¬q), we fill in the results as follows based on the given information:

[tex]\[ \begin{array}{|c||c||c|c|} \hline p & q & p \rightarrow q & \sim p \rightarrow \sim q \\ \hline T & T & T & \text{F} \\ \hline T & F & F & \text{T} \\ \hline F & T & T & \text{T} \\ \hline F & F & T & \text{T} \\ \hline \end{array} \][/tex]

So, we have:
- When [tex]\(p\)[/tex] is T (True) and [tex]\(q\)[/tex] is T (True), [tex]\( ¬p ➔ ¬q \)[/tex] is F (False).
- When [tex]\(p\)[/tex] is T (True) and [tex]\(q\)[/tex] is F (False), [tex]\( ¬p ➔ ¬q \)[/tex] is T (True).
- When [tex]\(p\)[/tex] is F (False) and [tex]\(q\)[/tex] is T (True), [tex]\( ¬p ➔ ¬q \)[/tex] is T (True).
- When [tex]\(p\)[/tex] is F (False) and [tex]\(q\)[/tex] is F (False), [tex]\( ¬p ➔ ¬q \)[/tex] is T (True).