Find the distance, [tex]d[/tex], of [tex]AB[/tex].

[tex]A = (-7, -7) \quad B = (-3, -1)[/tex]

[tex]
d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \\
d = [?]
[/tex]

Round to the nearest tenth.



Answer :

To find the distance [tex]\( d \)[/tex] between points [tex]\( A \)[/tex] and [tex]\( B \)[/tex], we use the distance formula:

[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]

Given the points [tex]\( A = (-7, -7) \)[/tex] and [tex]\( B = (-3, -1) \)[/tex], we identify the coordinates as follows:
[tex]\[ (x_1, y_1) = (-7, -7) \][/tex]
[tex]\[ (x_2, y_2) = (-3, -1) \][/tex]

First, subtract the corresponding coordinates of points [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:

[tex]\[ x_2 - x_1 = -3 - (-7) = -3 + 7 = 4 \][/tex]
[tex]\[ y_2 - y_1 = -1 - (-7) = -1 + 7 = 6 \][/tex]

Next, square these differences:

[tex]\[ (x_2 - x_1)^2 = 4^2 = 16 \][/tex]
[tex]\[ (y_2 - y_1)^2 = 6^2 = 36 \][/tex]

Now, add these squared values:

[tex]\[ 16 + 36 = 52 \][/tex]

Take the square root of this sum to find the distance:

[tex]\[ d = \sqrt{52} \approx 7.211102550927978 \][/tex]

Finally, round the distance to the nearest tenth:

[tex]\[ d \approx 7.2 \][/tex]

Thus, the distance [tex]\( d \)[/tex] between points [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is approximately 7.2 units.