Find the distance, [tex] d [/tex], of [tex] AB [/tex].

[tex] A = (11, -5) \quad B = (1, 7) [/tex]

[tex]
\begin{array}{c}
d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \\
d = \sqrt{(1 - 11)^2 + (7 + 5)^2}
\end{array}
[/tex]

Round to the nearest tenth.



Answer :

To find the distance [tex]\( d \)[/tex] between points [tex]\( A \)[/tex] and [tex]\( B \)[/tex], we use the distance formula:

[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]

Given the coordinates of the points:
[tex]\[ A = (11, -5) \quad \text{and} \quad B = (1, 7) \][/tex]

First, identify the coordinates:
[tex]\[ (x_1, y_1) = (11, -5) \][/tex]
[tex]\[ (x_2, y_2) = (1, 7) \][/tex]

Next, calculate the differences between the x-coordinates and y-coordinates:
[tex]\[ x_2 - x_1 = 1 - 11 = -10 \][/tex]
[tex]\[ y_2 - y_1 = 7 - (-5) = 7 + 5 = 12 \][/tex]

Now, square these differences:
[tex]\[ (x_2 - x_1)^2 = (-10)^2 = 100 \][/tex]
[tex]\[ (y_2 - y_1)^2 = 12^2 = 144 \][/tex]

Add these squared differences:
[tex]\[ (x_2 - x_1)^2 + (y_2 - y_1)^2 = 100 + 144 = 244 \][/tex]

Take the square root of the sum to find the distance [tex]\( d \)[/tex]:
[tex]\[ d = \sqrt{244} \approx 15.620499351813308 \][/tex]

Finally, round the distance to the nearest tenth:
[tex]\[ d \approx 15.6 \][/tex]

Thus, the distance between points [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is approximately [tex]\( 15.6 \)[/tex].