Answer :
To find the coordinates of point [tex]\( Q \)[/tex] given the points [tex]\( P \)[/tex] and [tex]\( R \)[/tex] and the ratio [tex]\( PR:RQ = 2:3 \)[/tex], use the section formula. Given the coordinates of [tex]\( P \)[/tex] as [tex]\( (-10, 3) \)[/tex] and [tex]\( R \)[/tex] as [tex]\( (4, 7) \)[/tex] and the ratio [tex]\( m:n = 2:3 \)[/tex], you need to find the coordinates of [tex]\( Q \)[/tex].
The section formula states that if a point [tex]\( R \)[/tex] divides the line segment joining points [tex]\( P(x_1, y_1) \)[/tex] and [tex]\( Q(x_2, y_2) \)[/tex] in the ratio [tex]\( m:n \)[/tex], then the coordinates of [tex]\( Q \)[/tex] are given by:
[tex]\[ Q = \left( \frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n} \right). \][/tex]
In our case, we need to find [tex]\( Q(x_2, y_2) \)[/tex]:
[tex]\[ R = \left( \frac{2x_2 + 3(-10)}{2+3}, \frac{2y_2 + 3(3)}{2+3} \right). \][/tex]
Given that [tex]\( R = (4, 7) \)[/tex], equate the coordinates:
[tex]\[ 4 = \frac{2x_2 - 30}{5} \][/tex]
[tex]\[ 7 = \frac{2y_2 + 9}{5}. \][/tex]
Let's solve the equations one by one:
For the x-coordinate:
[tex]\[ 4 = \frac{2x_2 - 30}{5}. \][/tex]
Multiply both sides by 5:
[tex]\[ 20 = 2x_2 - 30. \][/tex]
Add 30 to both sides:
[tex]\[ 50 = 2x_2. \][/tex]
Divide by 2:
[tex]\[ x_2 = 25. \][/tex]
For the y-coordinate:
[tex]\[ 7 = \frac{2y_2 + 9}{5}. \][/tex]
Multiply both sides by 5:
[tex]\[ 35 = 2y_2 + 9. \][/tex]
Subtract 9 from both sides:
[tex]\[ 26 = 2y_2. \][/tex]
Divide by 2:
[tex]\[ y_2 = 13. \][/tex]
So, the coordinates of point [tex]\( Q \)[/tex] are:
[tex]\[ Q = (25, 13). \][/tex]
Thus, the correct answer is:
C. [tex]\((25, 13)\)[/tex].
The section formula states that if a point [tex]\( R \)[/tex] divides the line segment joining points [tex]\( P(x_1, y_1) \)[/tex] and [tex]\( Q(x_2, y_2) \)[/tex] in the ratio [tex]\( m:n \)[/tex], then the coordinates of [tex]\( Q \)[/tex] are given by:
[tex]\[ Q = \left( \frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n} \right). \][/tex]
In our case, we need to find [tex]\( Q(x_2, y_2) \)[/tex]:
[tex]\[ R = \left( \frac{2x_2 + 3(-10)}{2+3}, \frac{2y_2 + 3(3)}{2+3} \right). \][/tex]
Given that [tex]\( R = (4, 7) \)[/tex], equate the coordinates:
[tex]\[ 4 = \frac{2x_2 - 30}{5} \][/tex]
[tex]\[ 7 = \frac{2y_2 + 9}{5}. \][/tex]
Let's solve the equations one by one:
For the x-coordinate:
[tex]\[ 4 = \frac{2x_2 - 30}{5}. \][/tex]
Multiply both sides by 5:
[tex]\[ 20 = 2x_2 - 30. \][/tex]
Add 30 to both sides:
[tex]\[ 50 = 2x_2. \][/tex]
Divide by 2:
[tex]\[ x_2 = 25. \][/tex]
For the y-coordinate:
[tex]\[ 7 = \frac{2y_2 + 9}{5}. \][/tex]
Multiply both sides by 5:
[tex]\[ 35 = 2y_2 + 9. \][/tex]
Subtract 9 from both sides:
[tex]\[ 26 = 2y_2. \][/tex]
Divide by 2:
[tex]\[ y_2 = 13. \][/tex]
So, the coordinates of point [tex]\( Q \)[/tex] are:
[tex]\[ Q = (25, 13). \][/tex]
Thus, the correct answer is:
C. [tex]\((25, 13)\)[/tex].