Answer :

Certainly! Let's evaluate the expression [tex]\(6m(-p + m)\)[/tex] given the values [tex]\(m = 4\)[/tex] and [tex]\(p = -2\)[/tex].

1. Substitute the values of [tex]\(m\)[/tex] and [tex]\(p\)[/tex] into the expression:
[tex]\[ 6 \cdot 4 \cdot (-(-2) + 4) \][/tex]

2. Simplify the inner expression [tex]\( -(-2) + 4 \)[/tex]:
- [tex]\(-(-2)\)[/tex] turns into [tex]\(+2\)[/tex] because the negative of a negative number is positive.
- So the expression becomes [tex]\( 2 + 4 = 6 \)[/tex].

3. Now substitute back into the expression:
[tex]\[ 6 \cdot 4 \cdot 6 \][/tex]

4. Calculate the multiplication:
- First, multiply [tex]\(6 \cdot 4\)[/tex]:
[tex]\[ 6 \cdot 4 = 24 \][/tex]
- Then multiply the result [tex]\(24\)[/tex] by [tex]\(6\)[/tex]:
[tex]\[ 24 \cdot 6 = 144 \][/tex]

So, the value of the expression [tex]\(6m(-p + m)\)[/tex] when [tex]\(m=4\)[/tex] and [tex]\(p=-2\)[/tex] is [tex]\(144\)[/tex].