Sure! Let's evaluate the given expression step-by-step for the given values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex].
We start with the expression:
[tex]\[ 9 - (2b - a) \][/tex]
Step 1: Substitute [tex]\(a = -5\)[/tex] and [tex]\(b = 4\)[/tex] into the expression:
[tex]\[ 9 - (2 \cdot 4 - (-5)) \][/tex]
Step 2: Perform the multiplication inside the parentheses:
[tex]\[ 2 \cdot 4 = 8 \][/tex]
So, it becomes:
[tex]\[ 9 - (8 - (-5)) \][/tex]
Step 3: Note that subtracting a negative value is equivalent to adding the positive value, hence:
[tex]\[ 8 - (-5) = 8 + 5 \][/tex]
Step 4: Perform the addition inside the parentheses:
[tex]\[ 8 + 5 = 13 \][/tex]
So now the expression is:
[tex]\[ 9 - 13 \][/tex]
Step 5: Finally, subtract 13 from 9:
[tex]\[ 9 - 13 = -4 \][/tex]
Therefore, the value of the expression [tex]\( 9 - (2b - a) \)[/tex] when [tex]\( a = -5 \)[/tex] and [tex]\( b = 4 \)[/tex] is:
[tex]\[ \boxed{-4} \][/tex]